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Current plateaus of nonadiabatic charge pump: Multiphoton assisted processes
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We report a theoretical investigation of quantum parametric charge pump in the nonadiabatic regime at finite
pumping frequency and finite driving amplitude. A general and closed-form expression for pumped current is
derived in the form of a continuous fraction reflecting the multiphoton processes which are found to play an
important role. Our nonperturbative theory predicts a remarkable plateau structure in the pumped current due
to these multiphoton assisted processes in a double-barrier quantum well involving only a single pumping
potential. A current reversal is found as the resonant level of the pump crosses the Fermi energy of the leads.
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I. INTRODUCTION

A parametric charge pump is a device that drives the fl
of a dc electric current by a time-dependent variation oftwo
or more device parameters. The quantum parametric p
has received considerable attention both experimentally
theoretically.1–33A very useful and clear transport theory o
quantum parametric pump was provided by Brouwer1 for the
adiabatic regime, i.e., in thev→0 limit wherev is the fre-
quency of the driving force. This theory was built on th
scattering matrix approach for coherent ac transport de
oped earlier by Bu¨ttiker, Thomas, and Preˆtre.34 The adiabatic
limit is relevant for situations of slow potential modulatio
so that electrons traverse the device almost without notic
the change of the potential landscape. The experimental
of Switkeset al.3 has demonstrated the operation of a qu
tum parametric pump in the adiabatic regime where electr
were pumped out quantum coherently.

For parametric quantum pumps working at higher f
quency, electrons may sample a time-dependent pote
landscape as they traverse the device. In this situation
needs to consider the physics beyond the adiabatic reg
So far several papers have been devoted to the understa
of nonadiabatic quantum pumps. Moskalets and Bu¨ttiker
have formulated a Floquet scattering matrix theory30 which
treats adiabatic and nonadiabatic quantum pumps on e
footing, i.e., using scattering matrices, so that an exact s
tion was obtained numerically for an oscillating doub
barrier pump structure. For mesoscopic samples with a
crete spectrum, Floquet scattering matrix theory predicts30 a
sign reversal of the pumped current for a specific pump
frequencyv. Polianski, Vavilov, and Brouwer considere
fluctuations of charge transmitted through a parame
pump, also from a scattering matrix formalism with a sc
tering matrix that depends on two times, and analyzed
average and variance of the noise for an ensemble of cha
quantum dots.25 In addition, two of the present authors co
sidered the heat current in nonadiabatic pumps26 with a scat-
tering matrix theory, following the earlier work of Avron
et al. that a pump is optimal if the heat current equals
power of Joule heat.21 While considerable understanding
nonadiabatic quantum pumps was established by these
0163-1829/2003/68~15!/155326~7!/$20.00 68 1553
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other contributions,27 previous works25–27were mostly based
on perturbative schemes either in term of pumping freque
or pumping amplitude.

The purpose of this work is to develop a nonperturbat
theory for quantum parametric pump in general terms
pumping frequency and pumping amplitude. Such a theor
useful for providing further understanding of charge pum
in the nonadiabatic regime, and helps to establish a m
general and unambiguous physical picture of transport
tures not accessible by perturbative theories. We found
such a theory can be achieved by the Keldysh nonequ
rium Green’s-function~NEGF! ~Ref. 27! formalism. In par-
ticular, we derived a general formula of pumped curre
which, in various limits, reproduces known results of pre
ous work where the driving parameter has a single sinuso
mode. In the nonadiabatic regime, we predict transport f
tures using an example of quantum-well charge pump tha
driven by asingleparameter: such a pump is only possible
the nonadiabatic regime.27 In particular, if the pumping po-
tential is located at the barriers of the quantum well, t
pumped current exhibits remarkable plateaus due to a m
photon assisted pumping process. The width of a platea
found to be determined by\v while its height varies de-
pending on the pumping amplitude and coupling stren
between the pump and the leads. By tuning a gate volt
that shifts the resonance level of the quantum well to cr
the Fermi energy of the leads, we observe a direction re
sal of the pumped current. We also investigate the pum
current when the single pumping parameter is located in
interior of the quantum well. We find that the pumped curre
increases rapidly by several orders of magnitude as
pumping parameter is shifted away from the symmetry c
ter of the quantum well.

The rest of the paper is organized as follows. In the f
lowing section, we present the detailed derivation of t
pumped current in the nonadiabatic regime with arbitra
pumping amplitude. Section III presents results for t
quantum-well pump, and the last section is a short summ

II. THEORY

In this section we derive the expression of pumped c
rent in the nonadiabatic regime for an arbitrary mesosco
©2003 The American Physical Society26-1
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conductor. We first cast the pumped current into a w
known form in terms of retarded and advanced Green’s fu
tions, and then derive these Green’s functions for the pu
for arbitrary pumping frequencyv and pumping amplitude.

Consider a mesoscopic parametric pump which is defi
by a Hamiltonian

Ĥ5Ĥd1H8~ t !, ~1!

whereĤd describes the electronic structure of the pump,
leads, as well as the coupling between them.H8(t) is a time-
dependent driving potential for the quantum pump which
assume to have the following form:

H8~ t !5~V/2!exp~ ivt !1~V* /2!exp~2 ivt !, ~2!

whereV is the effective pumping potential profile.35 In the
following, we neglect interaction between electrons in t
ideal leads labeled bya[L,R.

The electron current operator in leada can be evaluated
from the Heisenberg equation of motionÎ a5dN̂a /dt5

2 i /\@N̂a ,Ĥ#, whereN̂a is the number operator in leada,
@•••# denotes commutator, and\ is the reduced Planck con
stant. Following Ref. 36, using a second quantized form oĤ
to carry out the commutator, the time-averaged current~set-
ting \51) can be expressed in terms of Keldysh noneq
librium Green’s functions as follows:36

I a52
q

tE0

t

dtE dt1Tr@Gr~ t,t1!Sa
,~ t1 ,t !

1G,~ t,t1!Sa
a~ t1 ,t !1c.c.#, ~3!

wheret52p/v is the period of pumping cycle;Gr ,a(t,t1)
are the retarded~r! and advanced~a! Green’s functions;G,

is the lesser Green’s function; andSa
,5 iGa f a is the lesser

self-energy which is determined by the linewidth functionGa
and the Fermi functionf a of the ath lead. We now cast Eq
~3! into a well-known form in terms of retarded and a
vanced Green’s functions.

Carrying out a double-time Fourier transform

Gg~ t1 ,t2!5E dE1

2p

dE2

2p
e2 iE1t11 iE2t2Gg~E1 ,E2!

with g5r ,a,,, Eq. ~3! becomes

I a52
q

2NtE dE1

2p

dE2

2p
Tr$@Gr~E1 ,E2!

2Ga~E1 ,E2!#Sa
,~E2 ,E1!1G,~E1 ,E2!@Sa

a~E2 ,E1!

2Sa
r ~E2 ,E1!#%

[2
q

8Ntp2
Tr@~Gr2Ga!SL

,1G,~SL
a2SL

r !#, ~4!

where we have extended the integration range fordt in Eq.
~3! to @2Nt,Nt# with N→`. Note that in Eq.~4! the matrix
Gg has elementGg(E1 ,E2). It is also easy to prove tha
15532
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Gr2Ga52 iGrGGa whereG5(aGa is the total linewidth.
Using the Keldysh equationG,5GrS,Ga, and the fact that
Sg(E2 ,E1)52pd(E12E2)Sg(E1) at zero external bias, we
obtain

I a5
q

2NtE dE1

2p

dE2

2p
Tr@Ga~E1!Gr~E1 ,E2!G~E2!

3Ga~E2 ,E1!#@ f ~E2!2 f ~E1!#.

Finally, using the identity(E52Nt*dE/(2p), we arrive at
the well-known expression,22–26,30

I a5
q

~2Nt!2E dE

2p (
n52`

1`

Tr@Ga~E!Gr~E,E1nv!

3Gn~E!Ga~E1nv,E!#@ f n~E!2 f ~E!#, ~5!

where Gn(E)[G(E1nv) and f n(E)[ f (E1nv). In this
expression, the summation over integern clearly indicates
the contributions from multiphoton processes toward
pumped current.

In the following, using Eq.~5! as the starting point and
deriving the Green’s functions for the pumping potential E
~2!, we derive a closed-form solution for the pumped curre
I a .

A. The retarded Green’s function

We now proceed to calculateGr(E,E1nv) which is
needed for evaluating the pumped current through Eq.~5!.
Gr is calculated by the Dyson equation which, after
double-time Fourier transform, becomes

Gr~E1 ,E2!52pG0r~E1!d~E12E2!1E dE

2p

3Gr~E1 ,E21E!H8~E!G0r~E2!, ~6!

where G0r is the equilibrium Green’s function when th
pumping potentialH8 is set to zero, andH8(E)5p@Vd(E
1v)1V* d(E2v)# is the Fourier transform ofH8(t) in Eq.
~2!. From now on we assume that the equilibrium Gree
function G0r has been known or calculated for the devi
HamiltonianĤd of Eq. ~1!, and an explicit example will be
given in the following section.

Carrying out the energy integration in Eq.~6!, we obtain

Gr~E1 ,E2!52pG0r~E1!d~E12E2!1@Gr~E1 ,E22v!V

1Gr~E1 ,E21v!V* #G0r~E2!/2. ~7!

We now use Eq.~7! to derive a general expression fo
Gr(E,E1nv) as follows. We simplify notation using the
following abbreviations: Gn

r (E)[Gr(E,E1nv) and
Gn

0r(E)[G0r(E1nv). Therefore, for example, Eq.~7!
gives the multiphoton Green’s function forn50,61 as

G0
r 52pG0

0rd~0!1~G1
r V* 1G21

r V!G0
0r /2,

G1
r 5~G2

r V* 1G0
r V!G1

0r /2,
6-2
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G21
r 5~G0

r V* 1G22
r V!G21

0r /2. ~8!

Therefore, to computeG0
r one needsG61

r which in turn
needsG62

r , etc. Similarly, the multiphoton Green’s functio
Gn

r can be obtained by iterating the following expressi
obtained from Eq.~7!:

Gn
r 5~Gn11

r V* 1Gn21
r V!Gn

0r /2.

This equation has the following recursive solution:

Gn
r 5Gn21

r VGn
0r 1

2an
r

, ~9!

where an
r 5@(an ,ān),(an11 ,ān11),(an12 ,ān12), . . . # with

an[ iVGn11
0r /2 and ān5 iV* Gn

0r /2. The continued fraction

@(a1 ,ā1),(a2 ,ā2),(a3 ,ā3), . . . # is defined as

@~a1 ,ā1!,~a2 ,ā2!, . . . #

[11a1

1

11a2

1

11a3

1

11•••

ā3

ā2

ā1 . ~10!

Since the equilibrium Green’s functionsGn
0r[G0r(E1nv)

for the device HamiltonianĤd @see Eq.~1!# is assumed to be
known, the continued fraction can be calculated to arbitr
order.

Setting n561 in Eq. ~9!, we obtain G1
r

5G0
r VG1

0r /(2a1
r ) and G21

r 5G0
r V* G21

0r /(2b21
r ). Here

b2n
r 5@(b2n ,b̄2n),(b2n21 ,b̄2n21), . . . # with b2n

5 iV* G2n21
0r /2 and b̄2n5 iVG2n

0r /2. Similar to above, the
continued fractionb2n

r is calculable to arbitrary order. Sub
stituting these expressions ofG61

r into Eq. ~8! and solving
for G0

r (E), we obtain

G0
r ~E!5

2pd~0!

@G0
0r~E!#212S r~E!

~11!

with the multiphoton self-energy

S r5VG1
0r 1

4a1
r

V* 1V* G21
0r 1

4b21
r

V. ~12!

Equation~11! provides the closed-form solution of multipho
ton Green’s functionG0

r (E) which treats multiphoton pro
cesses exactly because its right-hand side includes arbi
order of multiphoton processes through the continued fr
tion. Note that the factor@2pd(0)#2 in Gr and Ga cancels
the factor (2Nt)2 in Eq. ~5!.

Equations~9!, ~11!, and ~12! form the central results o
this paper, they provide a closed-form solution of the pa
metric pumping in general terms of pumping frequency a
amplitudes. The practical procedure is as follows. Fo
given device HamiltonianĤd @see Eq.~1!# which represents
an arbitrary confining potential for the quantum pump,
15532
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calculate its retarded Green’s functionGn
0r . From Gn

0r we
calculateS r from Eq. ~12! and then evaluate Eq.~11! to
obtain G0

r (E). OnceG0
r is obtained,Gn

r can be calculated
recursively from Eq.~9! and the pumped current is then o
tained from Eq.~5!.

Although there is an infinite summation in Eq.~5! for the
pumped current, becauseGr(E,E1nv)[Gn

r is at least of
the order ofVn @see Eq.~9!#, this summation converges rap
idly even in the strong pumping regime as we will show w
an example in the following section. We also note that co
tinued fractions such as Eq.~10!, which appears in our for-
mula, are rather typical in describing multiphoton scatter
process.36 Finally, using the fact thatGrGGa5GaGGr , it is
not difficult to prove that(aI a50, i.e., current conservation
for parametric pumping is satisfied by our results.

B. Limiting cases

In this section we analyze two known limiting cases
parametric quantum pumping using our results Eqs.~9!, ~11!,
and ~12!, together with the starting expression Eq.~5!.

The first case concerns a generalv but small pumping
amplitudeV. In Refs. 27,37 the pumped current was obtain
using a perturbation theory up to the second order in pum
ing amplitudeV at arbitrary pumping frequencyv. Because
our Gn

r ;Vn @see Eq. ~9!# and the pumped currentI a

;Gn
r Gn

a , the perturbative result is recovered from the ge
eral expressions~9!, ~11!, and ~12! by only keeping terms
with n561. Therefore, from Eq.~8! and neglectingG62

r

terms, we obtainG1
r 'G0

0rVG1
0r /2. Equation~5! is now re-

duced to

I a5qE dE

8p (
n561

Tr@GaG0
0rVGn

0rGnGn
0aV* G0

0a#~ f n2 f !,

which is exactly the same as that found in Ref. 27.
As a second limiting case, we show that Eqs.~9!, ~11!,

and ~12! give the well-known result for the adiabati
regime.1 The adiabatic regime of parametric pumping co
cerns thev→0 limit. To take this limit, we apply the instan
taneous approximation for the Green’s function. We tra
form Eq. ~5! to the Wigner representation usingGr ,a(t1 ,t2)
5*(dE/2p)e2 iE(t12t2)G r ,a(E,T) where T[(t11t2)/2 and
G r ,a are the Green’s functions in the Wigner representati
We then obtain38

Gn
r 5E dTG r~E,T!e2 invT.

Substituting this equation into Eq.~5! and keeping only the
O(v) term, we obtain

I a5
q

~2Nt!2E dE

2pE2`

`

dTdT8 (
n52`

1`

nv

3Tr@Ga~E!G r~E,T!G~E!G a~E,T8!#

3exp@2 inv~T2T8!#]Ef ~E!. ~13!

Note that
6-3
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E dT (
n52`

1`

nv G r~E,T!exp@2 inv~T2T8!#

52 i E dT]TG r~E,T! (
n52`

1`

exp@2 inv~T2T8!#

522iNt ]T8G r~E,T8!,

where we have used the identity(E52Nt*dE/(2p). Equa-
tion ~13! now becomes

I a5
2 iq

t E
0

t

dTE dE

2p
Tr@Ga~E!]TG r~E,T!G~E!

3G a~E,T!#]Ef ~E!. ~14!

Using the Fisher-Lee relation39

Sab5dab2Ga
1/2G rGb

1/2,

we obtain

]TSab52Ga
1/2]TG rGb

1/2,

Sab
† 52Ga

1/2]TG aGb
1/2.

Therefore, Eq.~14! becomes

I a5
2 iq

t E
0

t

dTE dE

2p (
b

Tr

3@]TSab~E,T!Sab
† ~E,T!#]Ef ~E!, ~15!

with t52p/v. Equation ~15! is exactly the same as th
formula derived in Ref. 30@formula ~18! of this reference#,
which has been shown30 to be equivalent to Brouwer’s
expression1 of adiabatic pumping.

III. EXAMPLE: SINGLE PARAMETER DOUBLE-
BARRIER QUANTUM PUMP

The closed-form solution of quantum parametric pump
at arbitraryv and amplitudeV, Eqs.~9!, ~11!, and ~12! to-
gether with Eq.~5!, is applicable to pump structures involv
ing arbitrary confining potentials described by the dev
HamiltonianĤd @see Eq.~1!# whose retarded Green’s func
tion G0r was assumed to be known in the previous deri
tions.

In this section we give an example of a quantum param
ric pump whose device HamiltonianĤd is a one-dimensiona
~1D! symmetric doubled-barrier potential,

U~x!5H V0d~x1a!1V0d~x2a! if 2a,x,a

0 otherwise,
~16!

where 2a is the 1D quantum-well width andV0 the barrier
height. In the adiabatic theory~the v→0 limit!, two pump-
ing potentials are needed in order to give a nonzero pum
current.1 At a finite frequency, asingle pumping potential
appears to be enough to pump a dc current27 which is rather
15532
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peculiar. The nonperturbative theory presented above all
us to investigate this situation clearly and unambiguou
Therefore, in this example the driving potential of the qua
tum pumpH8(t) @see Eq.~1!# is asinglesinusoidal potential,
H8(t)[V(x,t)5Vpcos(vt)d(x2x0) with a real amplitude
Vp . xo is the space point whereH8(t) is applied. We calcu-
late the pumped current in the left lead@settinga5L in Eq.
~5!# at zero temperature. A gate voltagevg is applied to the
double-barrier structure to tune the resonant single-part
energy leveleo in the quantum well. We fix the Fermi leve
of leads atEf50 and assume it aligns with the resonant lev
eo when vg50. In the following, the unit is set by\52m
5q52a51. For GaAs material witha51000 Å, the en-
ergy unit is E50.056 meV which corresponds tov
513.2 GHz. The unit for pumped current becomes
310210 A. Finally, we set the double-barrier heightV0

5200 unless specified otherwise.
For the double-barrier confining potential Eq.~16!, the

equilibrium Green’s functionG0r has been calculated exact
in Ref. 40 by solving the Dyson equation~6!. Using thisG0r

@see Eq.~3! of Ref. 40#, we evaluate Eq.~12! followed by
Eqs.~11! and~9!. Finally we evaluate Eq.~5! for the pumped
current.

Figure 1 shows the pumped current versus gate voltag
the strong pumping regime forVp5160 andv51. Here we
applied the pumping driving forceH8(t) at the left barrier,
i.e., we setx052a. The following observations are in orde

~1! The pumped current displays a series of remarka
‘‘plateaus.’’ The width of a plateau is equal to\v whereas
the height of the plateau depends onVp andV0 in a nonlinear
fashion.

~2! The pumped current reverses its direction when
resonant level crosses the Fermi level of the lead, i.e., w
vg changes sign. As a result, we see from Fig. 1 that
pumped current is quenched nearvg50.

~3! The height of the current plateaus for negativevg is
considerably larger than those of positivevg .

Why the pumped current has a plateau structure? To
derstand this, we rewrite Eq.~5! exactly into the following
form:

FIG. 1. The pumped current vs the gate voltage forx052a,
v51, andvp5160. We have setn520 in the calculation.
6-4
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I L5qE dE

2p (
n51

1`

Fn~E!@ f n~E!2 f ~E!# ~17!

with

Fn~E!5
q

~2Nt!2
Tr@GL~E!Gr~E,E1nv!Gn~E!

3Ga~E1nv,E!2GLn~E!Gr~E1nv,E!G~E!

3Ga~E,E1nv!#.

We begin by recalling two important facts. First, althou
the summation over photon numbern goes to`, only a few
terms with smalln have significant contributions to curren
as discussed above. Second, although the energy integr
is from 2` to 1`, the Fermi functions in Eq.~17! cut this
range to@0,nv# at low temperatures. Next, we note that t
kernelFn consists of two terms, one due to photon abso
tion process41 and the other to photon emission proce
These two contributions differ by a sign indicating a comp
tition between photon absorption and emission.27 Fn has
sharp features due to resonance tunneling: as we tune
gate voltagevg to align the energy leveleo of the quantum
well to the Fermi level of the leads (Ef50), Fn shows a
sharp feature.Fn also shows sharp features at integer nu
bers of frequency. For example, for a negativevg which pulls
eo to belowEf such thatEf2eo5nv, an electron can tunne
into level eo , absorb one or more photons to gain ene
nv, and tunnel out of the pump. For positivevg it is the
photon emission processes that are relevant. The sideb
in Fn(E) ~Fig. 2! due to photon absorption and photon em
sion are clearly seen@for an n-photon emission process, th
energy has been shifted bynv due to the transformation
from Eq. ~5! to Eq. ~17!#. The pumped current is the energ
integration ofFn(E) in the energy windowE5@0,nv# ac-
cording to Eq.~17!. Because for a given range ofvg , Fn(E)
has only a fixed number of peaks/dips in the rangeE
5@0,nv#, therefore from Eq.~17! the current is a constan

FIG. 2. The integrand of Eq.~17! vs gate voltage forn51 ~solid
line!, n52 ~dotted line!, andn53 ~dash-dotted line!. The system
parameters are the same as that of Fig. 1. For illustrating purp
we have offset the curve by 0.02.
15532
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for this range ofvg hence a current plateau is obtained in t
I a versusvg curve~see Fig. 1!. We conclude that the platea
structure is a direct result of multiphoton assisted proces

For the above example where the pumping force is on
left barrier (x052a), the positive current is due to photo
absorption processes and the current reverses its sign if
ton emission process dominates. The behavior of curren
versal has been observed before for pumping in car
nanotubes,42 charge quantization,18 and heat current gener
ated during the pumping,30 although from completely differ-
ent origins. Due to the energy dependence of coupling
tween the pump and the leads, the sideband is asymm
with a larger peak for photon absorption process. As a res
the height of the current plateau is larger for photon abso
tion process. Our analysis showed that this plateau struc
persists for different frequencies and pumping amplitud
Further analysis also shows that there are two effects in
encing the current plateau structure. The first is the bar
height of the quantum well: current plateaus can only
observed in the strong tunneling regime and they disapp
for low barrier height. The second is temperature: the plat
structure is rounded off at finite temperature and is destro
when temperature reaches;200 mK for v510 GHz.

In the following, we investigate the situation when th
pumping potential is inside the double-barrier structure, i
when2a,x0,a. For this situation, we found a similar pla
teau structure in the pumped current due to the same ph
assisted processes as discussed in the last paragraph. I
3, the pumped current as a function of pumping positionx0 is
plotted at a fixedvg520.67 for a much smaller pumping
amplitudevp56. In the calculation, we have included th
contributions from one photon~dot-dashed line!, two pho-
tons ~dashed line!, five photons~dotted line!, and twenty
photons~solid line!. We have checked the convergence
including thirty photons: the difference is within 1028. We
observe from Fig. 3 that the pumped currentI p is antisym-
metricabout the center of the pump. As expected, for a sy
metric structure (x050), I p vanishes identically. Atx05
20.5, we foundI p5231026. Figure 3 indicates thatI p can

e,

FIG. 3. The pumped current vs position of the pumping pot
tial. Here vg520.67, v51, and vp56. In the calculation, we
have setn520 ~solid line!, n55 ~dotted line!, n52 ~dashed line!,
andn51 ~dot-dashed line!.
6-5
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increase by three orders of magnitude by varying the posi
of the pumping potential away from the barriers.

Figure 3 shows abrupt changes of pumped current asx0 is
varied. To understand this, we investigate the one-pho
process for which the pumped current is

I a5
q

~8Nt!2E dE

2p (
n561

Tr@G0
aGaG0

r VGn
0rGnGn

0a#

3@ f n~E!2 f ~E!#.

In Fig. 4, we plot the one-photon density of states~DOS!
defined as

E dE

2p
Tr@G0

aGaG0
r #@ f 1~E!2 f ~E!#,

which is highly localized spatially with abrupt change asx0
is varied, correlating very well with the abrupt variations
the pumped current. We conclude that the abrupt chang
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in

the pumped current as a function of position of the pump
potential is due to quantum interference of multiphoton
sisted processes. Finally, the pumped current in Fig. 3 sh
a plateau region when20.1,x,0.1. Our numerical results
show that the pumped current in that region is nonzero an
larger than the pumped current when the pumping poten
is located at the barrier. As the strength of the pumping
tential increases, the pumped current in the plateau reg
also increases.

IV. SUMMARY

In this work, we have derived a general and nonpertur
tive expression for the electric current of parametric quant
pumps at finite frequency and finite pumping amplitude. T
theory is also general enough so that arbitrary device st
tures can be investigated including situations where
pumping potential is located in theinterior of the scattering
region. We have shown that this theory reproduces pre
ously known results in both adiabatic regime and in pert
bative approach.

For a double-barrier quantum-well pump, we have sho
that in the nonadiabatic regime, a single parameter is
equate to pump a dc current due to multiphoton proces
Such a current is found to have plateau structure preci
due to the multiphoton assisted processes. The width of
current plateau is determined by the pumping frequency. A
gate voltage is varied to shift the resonance level of the qu
tum well across the Fermi energy of leads, the pumped
rent is found to reverse its direction due to a competition
photon absorption and emission processes.

ACKNOWLEDGMENTS

We gratefully acknowledge support by a RGC grant fro
the SAR Government of Hong Kong under Grant No. HK
7113/02P, a CRCG Grant from the University of Hong Kon
and from NSERC of Canada and FCAR of Quebec~H.G!.

e

14C.S. Tang and C.S. Chu, Solid State Commun.120, 353 ~2001!.
15Y. Levinson, O. Entin-Wohlman, and P. Wolfle

cond-mat/0104408~unpublished!.
16J. Wang and B.G. Wang, Phys. Rev. B65, 153311~2002!; B.G.

Wang and J. Wang,ibid. 65, 233315~2002!.
17O. Entin-Wohlman, A. Aharony, and Y. Levinson, Phys. Rev.

65, 195411~2002!.
18O. Entin-Wolman and A. Aharony, Phys. Rev. B66, 035329

~2002!.
19M. Blaauboer, Phys. Rev. B65, 235318~2002!.
20Y. Levinson, O. Entin-Wohlman, and P. Wolfle, Physica A302,

335 ~2001!.
21J.E. Avron, A. Elgart, G.M. Graf, and L. Sadun, Phys. Rev. Le

87, 236601~2001!.
22M.G. Vavilov, V. Ambegaokar, and I.L. Aleiner, Phys. Rev. B63,

195313~2001!.
23V.I. Yudson, E. Kanzieper, and V.E. Kravtsov, Phys. Rev. B64,

045310~2001!.

i-

ti-
6-6



B

s

.

ring

so

o-

CURRENT PLATEAUS OF NONADIABATIC CHARGE . . . PHYSICAL REVIEW B 68, 155326 ~2003!
24M. Moskalets and M. Buttiker, Phys. Rev. B66, 035306~2002!.
25M.L. Polianski, M.G. Vavilov, and P.W. Brouwer, Phys. Rev.

65, 245314~2002!.
26B.G. Wang and J. Wang, Phys. Rev. B66, 125310~2002!; 66,

201305~2002!.
27B.G. Wang, J. Wang, and H. Guo, Phys. Rev. B65, 073306

~2002!.
28Y.D. Wei and J. Wang, Phys. Rev. B66, 195419~2002!.
29J.L. Wu, B.G. Wang, and J. Wang, Phys. Rev. B66, 205327

~2002!.
30M. Moskalets and M. Buttiker, Phys. Rev. B66, 205320~2002!.
31B.G. Wang, J. Wang, and H. Guo, Phys. Rev. B67, 092408

~2003!.
32Q.F. Sun, H. Guo, and J. Wang, Phys. Rev. Lett.90, 258301

~2003!; W. Long, Q.F. Sun, H. Guo, and J. Wang, Appl. Phy
Lett. 83, 1397~2003!.

33M. Moskalets and M. Buttiker, cond-mat/0302586~unpublished!.
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