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We report a theoretical investigation of quantum parametric charge pump in the nonadiabatic regime at finite
pumping frequency and finite driving amplitude. A general and closed-form expression for pumped current is
derived in the form of a continuous fraction reflecting the multiphoton processes which are found to play an
important role. Our nonperturbative theory predicts a remarkable plateau structure in the pumped current due
to these multiphoton assisted processes in a double-barrier quantum well involving only a single pumping
potential. A current reversal is found as the resonant level of the pump crosses the Fermi energy of the leads.
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. INTRODUCTION other contributiong! previous work& =2’ were mostly based
on perturbative schemes either in term of pumping frequency
A parametric charge pump is a device that drives the flowPr pumping amplitude.
of a dc electric current by a time-dependent variatiorwas The purpose of this work is to develop a nonperturbative
or more device parameters. The quantum parametric pumg‘eOry for quantum parametric pump in general terms of

has received considerable attention both experimentally ang/MpPing frequency and pumping amplitude. Such a theory is

theoretically* >3 A very useful and clear transport theory on useful for providing further understanding of charge pumps

quantum parametric pump was provided by Brotier the in the nonadiabatic regime, and helps to establish a more
adiabatic regime, i.e., in the— 0 limit where v is the fre- general and unambiguous physical picture of transport fea-

quency of the driving force. This theory was built on the tures not accessible by perturbative theories. We found that

scattering matrix approach for coherent ac transport deveﬁ.uch a the?ry can be achieved by the Keldysh nonequilib-
oped earlier by Btiiker, Thomas, and Pte3* The adiabatic "™ Green's-functior(NEGR (Ref. 27 formalism. In par-
limit is relevant for situations of slow potential modulation tlchglir, we d_erlvelq ? genera(lj formllila of pumﬁed fC“”ef.“
so that electrons traverse the device almost without noticing’ '¢"1: N Various limits, reproduces known resufts or previ-
the change of the potential landscape. The experimental daBt'S work where the driving parameter has a single sinusoidal

of Switkeset al® has demonstrated the operation of a Oluan_mode. In the nonadiabatic regime, we predict transport fea-

tum parametric pump in the adiabatic regime where electrong‘reS using an example of guantum-well c.harge pump tha_t IS
were pumped out quantum coherently. riven by asingleparameter: such a pump is only possible in

For parametric quantum pumps working at higher fre_the nonadiabatic reginfé.In particular, if the pumping po-

quency, electrons may sample a time-dependent potenti<I;ﬁ"nt'al Is located at the barriers of the quanium well, the
landscape as they traverse the device. In this situation o umped current exhibits remarkable plateaus due to a multi-

needs to consider the physics beyond the adiabatic regimE.yOton assisted pumping process. The width of a plateau is

So far several papers have been devoted to the understandi no_l to be determine_d bj @ while its height v_aries de-
of nonadiabatic quantum pumps. Moskalets andtiger ~PEnding on the pumping amplitude and coupling strength

have formulated a Floquet scattering matrix thédmyhich ~ Petween the pump and the leads. By tuning a gate voltage

treats adiabatic and nonadiabatic quantum pumps on equtﬁgat Shiﬁ$ the resonance level of the quantum_wel! to cross
footing, i.e., using scattering matrices, so that an exact sold! E; FferrT' energydof the Ieadvfl, WT ob'serve'a dlreﬁtlon rever(;
tion was obtained numerically for an oscillating double-S& Of the pumped current. We also investigate the pumpe

barrier pump structure. For mesoscopic samples with a digUent when the single pumping parameter is located in the

crete spectrum, Floquet scattering matrix theory pretfiets !nterior of the quantum well. We find that the p“mped current
ncreases rapidly by several orders of magnitude as the

sign reversal of the pumped current for a specific pumpin% . ‘< shifted » h
frequency . Polianski, Vavilov, and Brouwer considered PUMPING parameter is shifted away from the symmetry cen-
Jer of the quantum well.

fluctuations of charge transmitted through a parametri Th t of th _ ed as foll In the fol
pump, also from a scattering matrix formalism with a scat- € rest ol the paper 1S organized as follows. In the fol-

tering matrix that depends on two times, and analyzed thiWing dsectlon,tvye t[;]resent tdhebdt?taned_ derlv:.ittfl]on g.ft the
average and variance of the noise for an ensemble of chaotiMPea current in the nonadiabalic regime with arbitrary
quantum dot£® In addition, two of the present authors con- pumping amplitude. Section Il pre_senf[s results for the
sidered the heat current in nonadiabatic pufpéth a scat-  duantum-well pump, and the last section is a short summary.

tering matrix theory, following the earlier work of Avron

et al. that a pump is optimal if the heat current equals the
power of Joule hedt While considerable understanding of  In this section we derive the expression of pumped cur-
nonadiabatic quantum pumps was established by these ament in the nonadiabatic regime for an arbitrary mesoscopic

Il. THEORY
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conductor. We first cast the pumped current into a well-G"—

PHYSICAL REVIEW B68, 155326 (2003

G*=—-iG'T'G?® whereI'=% I', is the total linewidth.

known form in terms of retarded and advanced Green’s funcysing the Keldysh equatio~=G"3~G?, and the fact that

tions, and then derive these Green’s functions for the pump, »(g,,

for arbitrary pumping frequency and pumping amplitude.

Consider a mesoscopic parametric pump which is defined

by a Hamiltonian

H=Hg+H'(1), (1)

E,)=2756(E;—E,)X?(E,) at zero external bias, we
obtain
o9 (R dE ——TH[T (E;)G"(E;,E,)T(E
a_ZNT 271_ 2 r[ a( 1) ( 1 2) ( 2)

XG*(Ez,E1)][f(Ez)—f(ED)].

whereH, describes the electronic structure of the pump, its

leads, as well as the coupling between theth(t) is a time-

dependent driving potential for the quantum pump which w

assume to have the following form:
H'(t)= 2

whereV is the effective pumping potential profité.In the

(VI2)exp(i wt) +(V*2)exp( —i wt),

Finally, using the identity2=2N7[dE/(27), we arrive at

Jhe well-known expressioff, 2%

> Tl (E)G'(E,E+nw)

=

(2N7)2) 2m

following, we neglect interaction between electrons in the

ideal leads labeled by=L,R.
The electron current operator in leadcan be evaluated

from the Heisenberg equation of motion,=dN, /dt=
—i/ﬁ[Na,H], WhereNa is the number operator in lead,
[- - -] denotes commutator, artdis the reduced Planck con-
stant. Following Ref. 36, using a second quantized fort of
to carry out the commutator, the time-averaged cur(set-

XT'h(E)GHE+nw,E)][f,(E)-f(E)], 5
where I' ,(E)=T'(E+nw) and f,(E)=f(E+nw). In this

expression, the summation over integeclearly indicates
the contributions from multiphoton processes toward the
pumped current.

In the following, using Eq(5) as the starting point and
deriving the Green’s functions for the pumping potential Eq.
(2), we derive a closed-form solution for the pumped current
I

ting #=1) can be expressed in terms of Keldysh nonequi- “

librium Green’s functions as follow&

— gffdtf dt, TG (t,t) 2 (tq,1)
0

+G<(t1tl)22(tlit)+c'c']! (3)

where =27/ w is the period of pumping cycleG"2(t,t;)
are the retarde¢r) and advancedga) Green’s functionsG=
is the lesser Green’s function; adf, =il ,f, is the lesser
self-energy which is determined by the linewidth functiop

and the Fermi functiorii,, of the ath lead. We now cast Eq. where G
(3) into a well-known form in terms of retarded and ad-

vanced Green'’s functions.
Carrying out a double-time Fourier transform

dE, dE,

Gty )= | 5 5 e Eil NG (Ey Ey)

with y=r,a,<, Eq. (3) becomes

az ZNTf 27 2 T{[G (ElvEZ)
~G*(E1,Ex) 13, (Ep,Ep) +G=(Ey,Ep)[23(E,,Ey)
_Era(EzaEl)]}

q
8N77r

T (G'— G2 +G= (37— 3)], (4)
where we have extended the integration rangedfoin Eq.
(3) to[ =N7,N7] with N—<c. Note that in Eq(4) the matrix

G” has elemenG”(Eq,E,). It is also easy to prove that

A. The retarded Green'’s function

We now proceed to calculat&"(E,E+nw) which is
needed for evaluating the pumped current through (Bg.
G' is calculated by the Dyson equation which, after a
double-time Fourier transform, becomes

dE
G'(E;,E,)=27GY(E,)8(E,—E,)+ f 5

XG'(E;,E,+E)H'(E)GY(E,), (6)

is the equilibrium Green’s function when the
pumping potentiaH’ is set to zero, anti’(E)=#[VJS(E
+ w)+V* §(E— w)] is the Fourier transform dfl’ (t) in Eq.
(2). From now on we assume that the equilibrium Green’s
function G% has been known or calculated for the device
HamiltonianH4 of Eq. (1), and an explicit example will be
given in the following section.

Carrying out the energy integration in E@), we obtain

G'(E;,E»)=27G%(Ey) 8(E1—E,) +[G'(E1,Er— )V
+G"(Eq,Ex+ w)V* ]GO (E,)/2. (7)

We now use Eq(7) to derive a general expression for
G'(E,E+nw) as follows. We simplify notation using the
following  abbreviations: G(E)=G'(E,E+nw) and
GY(E)=G”(E+nw). Therefore, for example, Eq(7)
gives the multiphoton Green’s function fo=0,=1 as

GH=27G5 8(0)+ (G V* + G, V)GJ'/2,

Gi=(GLV*+G{V)GY/2,

155326-2
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Gf_lz(va*JrGf_zv)Ggfl/z_ (8) calculate its retarded Green’s functi@ﬁr. From Gﬂr we
o calculateX" from Eg. (12) and then evaluate Ed11) to
Therefore, to computés, one needsG.; which in tum  ghiain GI(E). OnceG} is obtained,G', can be calculated
needsG', ,, etc. Similarly, the multiphoton Green’s function recursively from Eq(9) and the pumped current is then ob-
G|, can be obtained by iterating the following expressiontained from Eq.(5).
obtained from Eq(7): Although there is an infinite summation in E@) for the
G (Gl V*+ G V)GY/2 pumped current, becausg’(E,E+nw)=G;, is at least of
n n+1 n-1 nte the order ofV" [see Eq/(9)], this summation converges rap-

This equation has the following recursive solution: idly even in the strong pumping regime as we will show with
an example in the following section. We also note that con-

o 1 tinued fractions such as E(L0), which appears in our for-
Gy =G,_1VGy —, (9 mula, are rather typical in describing multiphoton scattering
2ay process? Finally, using the fact thaG'TG?=G3I'G', it is

not difficult to prove that I ,=0, i.e., current conservation

where o}, = a, a, a, ...] with ; e )
ere an=[(an,an),(@n+1,8n+1):(8n+2,8n+2), - -] Wit for parametric pumping is satisfied by our results.

a,=iVG", /2 anda,=iV*G%/2. The continued fraction

[(a1,81),(82,8,),(a3,a3), - . .] is defined as B. Limiting cases

[(a1,a1),(85,8,), .. .] In this section we analyze two known limiting cases of
parametric quantum pumping using our results Egjs.(11),
1 _ and (12), together with the starting expression E§).
=l+a; as. (10) The first case concerns a genesalbut small pumping
1+a,——a, amplitudeV. In Refs. 27,37 the pumped current was obtained
a using a perturbation theory up to the second order in pump-
3 ing amplitudeV at arbitrary pumping frequenay. Because
. . , _ our G|~V" [see EQ.(9)] and the pumped currenk,
Since the equilibrium Green's functiond;'= G (E+ nw) ~G| G2, the perturbative result is recovered from the gen-
for the device Hamiltoniatiy [see Eq(1)] is assumed to be  era| expressiong9), (11), and (12) by only keeping terms
kngwn, the continued fraction can be calculated to arbitraryyith n=+1. Therefore, from Eq(8) and neglectingG". ,
order.

Setting n=*1 in Eg. (9, we obtain G}
=GHVGY/(2a}) and G",=G{v*G%,/(2B8",). Here
Bln=[(b_n.b_p),(b_p-1,bny),...1  with b,
=iv*GY, _,/2 andb_,=iVGY/2. Similar to above, the
continued fractiong" ,, is calculable to arbitrary order. Sub-
stituting these expressions &, ; into Eq. (8) and solving
for Go(E), we obtain

1+a,

1+...

terms, we obtairG}~G5'VGY'/2. Equation(5) is now re-
duced to

dE
=0 5 > TIr,GIVGYT . GoV*GY(f,—f),
n=+*1

which is exactly the same as that found in Ref. 27.

As a second limiting case, we show that E(®, (11),
and (12) give the well-known result for the adiabatic
regime! The adiabatic regime of parametric pumping con-

Gi(E)= 2m5(0) (11) cerns thew— 0 limit. To take this limit, we apply the instan-
[GY(E)] *-3"(E) taneous approximation for the Green’s function. We trans-
. . form Eq. (5) to the Wigner representation usi (t;,t,)
with the multiphoton self-energy = [(dE/2m)e 'E(i=IG"3(E T) where T=(t;+1,)/2 and

G"? are the Green's functions in the Wigner representation.

1 1 ;
a; 464
_ —ineT
Equation(11) provides the closed-form solution of multipho- GL—J’ dTG'(E, T)e .

ton Green’s functionGg(E) which treats multiphoton pro- o i o _

cesses exactly because its right-hand side includes arbitraguPstituting this equation into E¢5) and keeping only the

order of multiphoton processes through the continued fracO(«) term, we obtain

tion. Note that the factof275(0)]? in G and G? cancels e

the factor (N7)? in Eq. (5). | Jd_ij aTdT S ne
Equations(9), (11), and (12) form the central results of “ (2N7)2) 27) = n=—w

this paper, they provide a closed-form solution of the para-

metric pumping in general terms of pumping frequency and XTI (E)G"(E,T)I'(E)GXE,T")]

amplltude§. The F)I‘aCFIC(ill procedure is a's follows. For a sext] — ine(T—T")]def (E). (13)

given device Hamiltoniamd 4 [see Eq(1)] which represents

an arbitrary confining potential for the quantum pump, weNote that

155326-3
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+ o

dT D, nw G'(E,T)exd —ino(T—T")]

n=—ow

=—iJ dTo:G'(E,T) Z exd —ine(T-T")]

— —2iN7 a1.G"(E,T'),

where we have used the identiy:=2N7fdE/(27). Equa-
tion (13) now becomes

—iq [~ dE
=qu0 dTJ ETr[Fa(E)ﬁTgr(E,T)F(E)

XG¥(E,T)]def(E).
Using the Fisher-Lee relatiéh

(14

Saﬁ: 5aﬁ_ri/2grl"l/2’
we obtain

I1Sup=— FllzaTg F1/2

Sls=—T 221G 5°.

Therefore, Eq(14) becomes

—iq (7 dE
—7deTJEE Tr

X[ 91S,5(E, T)S 4(E, T)]0ef (E), (15)

with 7=27/w. Equation(15) is exactly the same as the

formula derived in Ref. 3Qformula (18) of this referencg

which has been shovih to be equivalent to Brouwer’s

expressioh of adiabatic pumping.

IIl. EXAMPLE: SINGLE PARAMETER DOUBLE-
BARRIER QUANTUM PUMP

PHYSICAL REVIEW B68, 155326 (2003

0.004 — T T T T T T T T

0.003 R

0.002 - 1

0.001 - R

0.000 - R

pumped current

-0.001 | R

-0.002 |- R

_0'003 1 1 Il L Il 1 Il L Il 1 1
gate voltage

FIG. 1. The pumped current vs the gate voltage Xgr —a,
o=1, andv,=160. We have sat=20 in the calculation.

peculiar. The nonperturbative theory presented above allows
us to investigate this situation clearly and unambiguously.
Therefore, in this example the driving potential of the quan-
tum pumpH’(t) [see Eq(1)] is asinglesinusoidal potential,
H'(t)=V(x,t) =Vcos@t)Ax—X;) with a real amplitude
Vp . X, is the space point whetg'(t) is applied. We calcu-
late the pumped current in the left lefskttinga=L in Eq.

(5)] at zero temperature. A gate voltagg is applied to the
double-barrier structure to tune the resonant single-particle
energy levele, in the quantum well. We fix the Fermi level

of leads aE;=0 and assume it aligns with the resonant level
€, whenv=0. In the following, the unit is set by =2m
=g=2a=1. For GaAs material witra=1000 A, the en-
ergy unit is E=0.056 meV which corresponds ta
=13.2 GHz. The unit for pumped current becomes 5
x10 1 A, Finally, we set the double-barrier height,
=200 unless specified otherwise.

For the double-barrier confining potential E{.6), the
equilibrium Green'’s functioG®" has been calculated exactly
in Ref. 40 by solving the Dyson equati®8). Using thisG®"
[see Eq.(3) of Ref. 40, we evaluate Eq(12) followed by

The closed-form solution of quantum parametric pumpingEgs.(11) and(9). Finally we evaluate Eq5) for the pumped

at arbitraryw and amplitudev, Egs.(9), (11), and(12) to-

gether with Eq(5), is applicable to pump structures involv-

current.
Figure 1 shows the pumped current versus gate voltage in

ing arbitrary confining potentials described by the devicethe strong pumping regime fof,= 160 andw=1. Here we
HamiltonianH4 [see Eq.(1)] whose retarded Green’s func- applied the pumping driving forcbl (t) at the left barrier,
tion G% was assumed to be known in the previous derivai.e., we sek,= —a. The following observations are in order.

tions.

(1) The pumped current displays a series of remarkable

In this section we give an example of a quantum paramet‘plateaus.” The width of a plateau is equal fow whereas
ric pump whose device Hamiltonidty is a one-dimensional the height of the plateau depends\gnandV in a nonlinear

(1D) symmetric doubles-barrier potential,

Vod(x+a)+Vyd(x—a) if —a<x<a
U(x)= . (16)
0 otherwise,
where 2 is the 1D quantum-well width and, the barrier
height. In the adiabatic theoryhe w—0 limit), two pump-

fashion.

(2) The pumped current reverses its direction when the
resonant level crosses the Fermi level of the lead, i.e., when
vy Changes sign. As a result, we see from Fig. 1 that the
pumped current is quenched neg=0.

(3) The height of the current plateaus for negatiygis
considerably larger than those of positivg.

ing potentials are needed in order to give a nonzero pumped Why the pumped current has a plateau structure? To un-

current! At a finite frequency, asingle pumping potential
appears to be enough to pump a dc cuffewhich is rather

derstand this, we rewrite E@5) exactly into the following
form:
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0.000 | —
0.02 | g g
g -0001}
3
0.00 | . £ o002l ]
-0.02 | 1 -0.008 | ]
-0.04 | . 0004 1
A -0.005 |- —
1 L 1 1 1 1 L 1 L 1 1
006 . . , . . . , . , L] 05 04 -03 02 01 00 01 02 03 04 05
6 -5 -4 -8 -2 -4 0 1 2 8 4 5 Position

gate voltage . .
FIG. 3. The pumped current vs position of the pumping poten-

FIG. 2. The integrand of Eq17) vs gate voltage fon=1 (solid  tial. Herevy=—0.67, =1, andv,=6. In the calculation, we
line), n=2 (dotted ling, andn=23 (dash-dotted line The system have sen=20 (solid line), n=5 (dotted ling, n=2 (dashed ling
parameters are the same as that of Fig. 1. For illustrating purposéndn=1 (dot-dashed ling
we have offset the curve by 0.02.

for this range ob 4 hence a current plateau is obtained in the
I, versusv 4 curve(see Fig. 1. We conclude that the plateau
structure is a direct result of multiphoton assisted processes.
. For the above example where the pumping force is on the
with left barrier (x,=—a), the positive current is due to photon
absorption processes and the current reverses its sign if pho-
ton emission process dominates. The behavior of current re-
versal has been observed before for pumping in carbon
nanotube4? charge quantizatioff and heat current gener-

XGHE+nw,E)-T'(E)G'(E+nw,E)I'(E) ated during the pumping, although from completely differ-

X GA(E,E+nw)]. ent origins. Due to the energy depenqlence of_coupling be_—

tween the pump and the leads, the sideband is asymmetric

We begin by recalling two important facts. First, althoughwith a larger peak for photon absorption process. As a result,
the summation over photon numhbegoes tox, only a few  the height of the current plateau is larger for photon absorp-
terms with smalln have significant contributions to current tion process. Our analysis showed that this plateau structure
as discussed above. Second, although the energy integratiparsists for different frequencies and pumping amplitudes.
is from — < to +, the Fermi functions in Eq17) cut this  Further analysis also shows that there are two effects influ-
range to[ O,nw] at low temperatures. Next, we note that the encing the current plateau structure. The first is the barrier
kernel F,, consists of two terms, one due to photon absorpheight of the quantum well: current plateaus can only be
tion proces$ and the other to photon emission process.observed in the strong tunneling regime and they disappear
These two contributions differ by a sign indicating a compe-for low barrier height. The second is temperature: the plateau
tition between photon absorption and emissibriz,, has  structure is rounded off at finite temperature and is destroyed
sharp features due to resonance tunneling: as we tune tlighen temperature reaches200 mK for =10 GHz.
gate voltagev to align the energy leved, of the quantum In the following, we investigate the situation when the
well to the Fermi level of the leadsE¢=0), F,, shows a pumping potential is inside the double-barrier structure, i.e.,
sharp featureF,, also shows sharp features at integer num-when—a<xy<a. For this situation, we found a similar pla-
bers of frequency. For example, for a negatiyevhich pulls  teau structure in the pumped current due to the same photon
€, to belowE; such thaE;— e,=nw, an electron can tunnel assisted processes as discussed in the last paragraph. In Fig.
into level ¢,, absorb one or more photons to gain energy3, the pumped current as a function of pumping positigis
Nw, and tunnel out of the pump. For positivg it is the  plotted at a fixedvy=—0.67 for a much smaller pumping
photon emission processes that are relevant. The sidebandsiplitudev,=6. In the calculation, we have included the
in F,(E) (Fig. 2) due to photon absorption and photon emis-contributions from one photofdot-dashed ling two pho-
sion are clearly seeffor an n-photon emission process, the tons (dashed ling five photons(dotted ling, and twenty
energy has been shifted byw due to the transformation photons(solid line). We have checked the convergence by
from Eq. (5) to Eq.(17)]. The pumped current is the energy including thirty photons: the difference is within 18 We
integration ofF,(E) in the energy windowE=[Onw] ac-  observe from Fig. 3 that the pumped curréptis antisym-
cording to Eq(17). Because for a given range of , F,(E) metricabout the center of the pump. As expected, for a sym-
has only a fixed number of peaks/dips in the rarfge metric structure X,=0), I, vanishes identically. Atx,=
=[0nw], therefore from Eq(17) the current is a constant —0.5, we foundp=2><10*6. Figure 3 indicates that, can

dE o
|L=qj 77 2 FaBIRE -] 17

q r
Fo(E)= WTr[FL(E)G (E,.E+nw)l'y(E)

155326-5
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0.004 — ' ' the pumped current as a function of position of the pumping
potential is due to quantum interference of multiphoton as-
sisted processes. Finally, the pumped current in Fig. 3 shows

0.003 | l a plateau region wher 0.1<x<0.1. Our numerical results

H i show that the pumped current in that region is nonzero and is
5 0.002 - | larger than the pumped current when the pumping potential
] i is located at the barrier. As the strength of the pumping po-
§ tential increases, the pumped current in the plateau region

0.001 L ) also increases.

6000 - ‘ . ‘ IV. SUMMARY

'°-|33 -02 -04 0.0 In this work, we have derived a general and nonperturba-
osition

tive expression for the electric current of parametric quantum

FIG. 4. The pumped current and the one-photon DOS vs posiPUMPps at finite frequency and finite pumping amplitude. The

tion of the pumping potential. Here,=—0.67, =1, andov, theory is also general enough so that arbitrary device struc-

=6. For illustrating purpose, the one-photon DOS has been multifures can be investigated including situations where the
plied by 0.01. pumping potential is located in theterior of the scattering

region. We have shown that this theory reproduces previ-

increase by three orders of magnitude by varying the positio@usly known results in both adiabatic regime and in pertur-

of the pumping potential away from the barriers. bative approach.

Figure 3 shows abrupt changes of pumped curremt és For a double-barrier quantum-well pump, we have shown
varied. To understand this, we investigate the one-photothat in the nonadiabatic regime, a single parameter is ad-
process for which the pumped current is equate to pump a dc current due to multiphoton processes.

Such a current is found to have plateau structure precisely

q a o 0a due to the multiphoton assisted processes. The width of the
|azm o n;ﬂ TGl GoVG, TGy current plateau is determined by the pumping frequency. As a
B gate voltage is varied to shift the resonance level of the quan-

X[f,(E)—f(E)]. tum well across the Fermi energy of leads, the pumped cur-

rent is found to reverse its direction due to a competition of

In Fig. 4, we plot the one-photon density of stat&0S) photon absorption and emission processes.

defined as
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