49 research outputs found

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Preterm birth prediction in asymptomatic women at mid-gestation using a panel of novel protein biomarkers: the Prediction of PreTerm Labor (PPeTaL) study.

    Get PDF
    BACKGROUND: Accurate prediction of spontaneous preterm labor/preterm birth in asymptomatic women remains an elusive clinical challenge because of the multi-etiological nature of preterm birth. OBJECTIVE: The aim of this study was to develop and validate an immunoassay-based, multi-biomarker test to predict spontaneous preterm birth. MATERIALS AND METHODS: This was an observational cohort study of women delivering from December 2017 to February 2019 at 2 maternity hospitals in Melbourne, Australia. Cervicovaginal fluid samples were collected from asymptomatic women at gestational week 16+0-24+0, and biomarker concentrations were quantified by enzyme-linked immunosorbent assay. Women were assigned to a training cohort (n = 136) and a validation cohort (n = 150) based on chronological delivery dates. RESULTS: Seven candidate biomarkers representing key pathways in utero-cervical remodeling were discovered by high-throughput bioinformatic search, and their significance in both in vivo and in vitro studies was assessed. Using a combination of the biomarkers for the first 136 women allocated to the training cohort, we developed an algorithm to stratify term birth (n = 124) and spontaneous preterm birth (n = 12) samples with a sensitivity of 100% (95% confidence interval, 76-100%) and a specificity of 74% (95% confidence interval, 66-81%). The algorithm was further validated in a subsequent cohort of 150 women (n = 139 term birth and n = 11 preterm birth), achieving a sensitivity of 91% (95% confidence interval, 62-100%) and a specificity of 78% (95% confidence interval, 70-84%). CONCLUSION: We have identified a panel of biomarkers that yield clinically useful diagnostic values when combined in a multiplex algorithm. The early identification of asymptomatic women at risk for preterm birth would allow women to be triaged to specialist clinics for further assessment and appropriate preventive treatment

    Ulipristal acetate versus levonorgestrel-releasing intrauterine system for heavy menstrual bleeding: the UCON randomised controlled trial and mechanism of action study

    No full text
    BackgroundHeavy menstrual bleeding affects one in four women and negatively impacts quality of life. The levonorgestrel-releasing intrauterine system is an effective long-term treatment but is discontinued by many due to unpredictable bleeding, or adverse effects. The selective progesterone receptor modulator ulipristal acetate is used to treat symptomatic fibroids but long-term efficacy for the symptom of heavy menstrual bleeding, irrespective of presence of fibroids, is unknown.ObjectivesTo determine whether ulipristal acetate is more effective at reducing the burden of heavy menstrual bleeding than levonorgestrel-releasing intrauterine system after 12 months of treatment in women with and without fibroids. We investigated mechanism of action of ulipristal acetate in a subset of 20 women.DesignRandomised, open-label, parallel group, multicentre trial with embedded mechanistic study.SettingTen UK hospitals.ParticipantsWomen with heavy menstrual bleeding aged 18 and over with no contraindications to levonorgestrel-releasing intrauterine system or ulipristal acetate.InterventionsThree 12-week treatment cycles of 5 mg ulipristal acetate daily, separated by 4-week treatment-free intervals, or continuous levonorgestrel-releasing intrauterine system following allocation in a 1 : 1 ratio using a web-based minimisation procedure.Main trial outcome measuresPrimary outcome was quality-of-life measured by menorrhagia multi-attribute scale at 12 months. Secondary outcomes included menstrual bleeding and patient satisfaction. Impact on fibroid size, endometrial appearance and liver function was also collected.Mechanistic study outcomeCellular markers for endometrial cell structure and function, determined from endometrial biopsies; volume of uterus and fibroids and microcirculation parameters were determined from magnetic resonance images.ResultsSample size was increased from 220 to 302 as a result of temporary halt to recruitment due to concerns of ulipristal acetate hepatoxicity. Subsequent withdrawal of ulipristal acetate and the COVID-19 pandemic led to a premature closure of recruitment, with 118 women randomised to each treatment and 103 women completing 12-month menorrhagia multi-attribute scale scores prior to this point. Primary outcome scores substantially improved in both arms, but at 12 months there was no evidence of a difference between those receiving three cycles of ulipristal acetate [median score category: 76–99, interquartile range (51–75 to 100), n = 53] and levonorgestrel-releasing intrauterine system [median score category: 76–99, interquartile range (51–75 to 100), n = 50; adjusted odds ratio 0.55, 95% confidence interval 0.26 to 1.17; p = 0.12]. Rates of amenorrhoea were much higher in those allocated ulipristal acetate compared with the levonorgestrel-releasing intrauterine system (12 months: 64% vs. 25%, adjusted odds ratio 7.12, 95% confidence interval 2.29 to 22.2). There was no evidence of a difference in other participant-reported outcomes. There were no cases of endometrial malignancy and no hepatotoxicity due to ulipristal acetate use.Mechanistic study resultsUlipristal acetate produced a reversible reduction in endometrial cell proliferation, as well as reversible alteration of other endometrial cellular markers. Ulipristal acetate did not produce a reduction in the volume of the uterus irrespective of coexisting fibroids, nor an effect on uterine microvascular blood flow.LimitationsThe urgent safety measures and premature closure of recruitment impacted final sample size.ConclusionsWe found no evidence of a difference in quality of life between the two treatments, but ulipristal acetate was superior to levonorgestrel-releasing intrauterine system at inducing amenorrhoea. Ulipristal acetate currently has restricted availability due to concerns regarding hepatotoxicity.Future workThere is a need to develop new, safe, effective and fertility-sparing medical treatments for heavy menstrual bleeding. The observed acceptability and effectiveness of ulipristal acetate warrants further research into the selective progesterone receptor modulator class of pharmacological agents.Study registrationThis trial is registered as ISRCTN 20426843
    corecore