883 research outputs found
Quantitative morphology of bedrock fault surfaces and identification of paleo-earthquakes
The quantitative analysis of morphologic characteristics of bedrock fault surfaces may be a useful approach to study faulting history and identify paleo-earthquakes. It is an effective complement to trenching techniques, especially to identify paleo-earthquakes in a bedrock area where trenching technique cannot be applied. In this paper, we calculate the 2D fractal dimension of three bedrock fault surfaces on the Huoshan piedmont fault in the Shanxi Graben, China using the isotropic empirical variogram. We show that the fractal dimension varies systematically with height above the base of the fault surface exposures, indicating a segmentation of the fault surface morphology. We interpret this segmentation as being due to different exposure duration of parallel fault surface bands, caused by periodical earthquakes, and discontinuous weathering. We take the average of fractal dimensions of each band as a characteristic value to describe its surface morphology, which can be used to estimate the exposure duration of the fault surface band and then the occurrence time of the earthquake that exposed the band. Combined with previous trenching results, we fit an empirical relationship between the exposure duration and the morphological characteristic value on the fault: D = 0.049 T + 2.246. The average width of those fault surface bands can also be regarded as an approximate vertical coseismic displacement of characteristic earthquake similar to the Hongdong M8 earthquake of 1303. Based on the segmentation of quantitative morphology of the three fault surfaces on the Huoshan piedmont fault, we identify three earthquake events. The coseismic vertical displacement of the characteristic earthquake on the Huoshan piedmont fault is estimated to be 3–4 m, the average width of these fault surface bands. Gaps with a width of 0.1–0.3 m between two adjacent bands, in which the fractal value increases gradually with fault surface height, are inferred to be caused by weathering between two earthquakes or interseismic slip on the fault
Investigation on the plasticity accumulation of Ti-6Al-4V fretting wear by decoupling the effects of wear and surface profile in finite element modelling
A finite-element-based wear modelling methodology and a computational device for decoupling wear effects is presented in this study. The decoupling of wear effects facilitates the capture of plasticity accumulation on a particular wear-scarring profile after a specific number of cycles. It was determined that significant plasticity accumulation due to plastic shakedown was predicted in a partial-slip case, while a saturation of plastic deformation was predicted in a gross-sliding case. It was also predicted that a significant amount of plasticity does not meaningfully contribute to the stress and strain range observed in the contact region. It was assumed that plasticity accumulation contributes towards wear of the material and feeds the stress changes, which indirectly affects fatigue life
Imaging of Low Compressibility Strips in the Quantum Hall Liquid
Using Subsurface Charge Accumulation scanning microscopy we image strips of
low compressibility corresponding to several integer Quantum Hall filling
factors. We study in detail the strips at Landau level filling factors
2 and 4. The observed strips appear significantly wider than predicted by
theory. We present a model accounting for the discrepancy by considering a
disorder-induced nonzero density of states in the cyclotron gap.Comment: 5 pages, 3 figure
Multiaxial viscoplasticity modelling of power plant steel
The thermo-mechanical fatigue (TMF) of power plant components is caused by the cyclic operation of power plant. A time-dependent plasticity model can be used to simulate the component response under cyclic thermo-mechanical loading. This paper is concerned with the modelling of thermo-mechanical behaviour of power plant steel under various loading conditions. Fully-reversed, strain-controlled tests were conducted on a parent material of P91 steel at high temperatures in order to determine material constants. A unified, Chaboche viscoplasticity model, was used to model the TMF behaviour of the steel. The multiaxial form of the Chaboche constitutive equations have been implemented in the finite element software and validated by comparing to experimental data. Simulation results have been compared with the results of anisothermal cyclic testing in order to validate the performance of the model in cyclic temperature conditions. The model’s performance under multiaxial stress conditions was investigated by testing and simulating the notched bar specimen under load-controlled conditions
Pressure Induced Change in the Magnetic Modulation of CeRhIn5
We report the results of a high pressure neutron diffraction study of the
heavy fermion compound CeRhIn5 down to 1.8 K. CeRhIn5 is known to order
magnetically below 3.8 K with an incommensurate structure. The application of
hydrostatic pressure up to 8.6 kbar produces no change in the magnetic wave
vector qm. At 10 kbar of pressure however, a sudden change in the magnetic
structure occurs. Although the magnetic transition temperature remains the
same, qm increases from (0.5, 0.5, 0.298) to (0.5, 0.5, 0.396). This change in
the magnetic modulation may be the outcome of a change in the electronic
character of this material at 10 kbar.Comment: 4 pages, 3 figures include
Investigation on the plasticity accumulation of Ti-6Al-4V fretting wear by decoupling the effects of wear and surface profile in finite element modelling
A finite-element-based wear modelling methodology and a computational device for decoupling wear effects is presented in this study. The decoupling of wear effects facilitates the capture of plasticity accumulation on a particular wear-scarring profile after a specific number of cycles. It was determined that significant plasticity accumulation due to plastic shakedown was predicted in a partial-slip case, while a saturation of plastic deformation was predicted in a gross-sliding case. It was also predicted that a significant amount of plasticity does not meaningfully contribute to the stress and strain range observed in the contact region. It was assumed that plasticity accumulation contributes towards wear of the material and feeds the stress changes, which indirectly affects fatigue life
Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography
Plasmon-resonant gold nanorods are demonstrated as low back-scattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a′, as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a' within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a′ and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, |a′ca - a′tiss|. Low backscattering albedo gold nanorods (14 × 44 nm; λmax = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% (randomized 2±0.4% intralipid) were readily detected at 82 ppm (by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm
Inferential reproduction analysis demonstrated that “paracetamol for acute low back pain” trial conclusions were reproducible
Objectives: The aim of this study was to reanalyze and reinterpret data obtained in Paracetamol in Acute Low Back Pain (PACE), the first large randomized controlled trial evaluating the efficacy of paracetamol in acute low back pain, to assess the inferential reproducibility of the original conclusions. Study Design and Setting: Mixed effects models were used to reanalyze pain intensity (primary outcome; 11-point Numeric Rating Scale) and physical functioning, health-related quality of life, sleep quality, and time until recovery (as secondary outcomes), according to the intention-to-treat principle. The original authors of the PACE study were not involved in the development of the methods for this reanalysis. Results: The reproduction analyses indicated no effect of treatment on pain intensity and confidence intervals excluded clinically worthwhile effects (adjusted main effect for regular paracetamol vs. placebo 0.00 [−0.02, 0.01; P = 0.85]; adjusted main effect for paracetamol as-needed vs. placebo 0.00 [−0.02, 0.01; P = 0.92]). Similar results were obtained for all secondary outcomes. Conclusion: This study indicates that the conclusions of the PACE trial are inferentially reproducible, even when using a different analytical approach. This reinforces the notion that the management of acute low back pain should focus on providing patients advice and reassurance without the addition of paracetamol
Observation of the screening signature in the lateral photovoltage of electrons in the Quantum Hall regime
The lateral photovoltage generated in the plane of a two-dimensional electron
system (2DES) by a focused light spot, exhibits a fine-structure in the quantum
oscillations in a magnetic field near the Quantum Hall conductivity minima. A
double peak structure occurs near the minima of the longitudinal conductivity
oscillations. This is the characteristic signature of the interplay between
screening and Landau quantization.Comment: 4 pages, 4 figures, to be published in Phys. Rev.
Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography
Plasmon-resonant gold nanorods (GNRs) can serve as imaging agents for spectroscopic optical coherence tomography (SOCT). The aspect ratio of the GNRs is adjusted for maximum absorption in the far red to create a partial spectral overlap with the short-wavelength edge of the near-infrared SOCT imaging band. The spectroscopic absorption profile of the GNRs is incorporated into a depth-resolved algorithm for mapping the relative GNR density within OCT images. This technique enables us to image GNR distributions in excised human breast carcinomas, demonstrating their potential as OCT contrast agents in heterogeneous, highly scattering tissues
- …