44 research outputs found

    Plant-based natural product chemistry for integrated pest management of Drosophila suzukii

    No full text
    Since the first reports of damage by Drosophila suzukii, the spotted-wing Drosophila (SWD), over a decade ago in Europe, widespread efforts have been made to understand both the ecology and the evolution of this insect pest, especially due to its phylogenetic proximity to one of the original model organisms, D. melanogaster. In addition, researchers have sought to find economically viable solutions for the monitoring and management of this agricultural pest, which has now swept across much of Europe, North America and Asia. In a new direction of study, we present an investigation of plant-based chemistry, where we search for natural compounds that are structurally similar to known olfactory cues from parasitoid wasps that in turn are welldescribed ovipositional avoidance cues for many Drosophila species. Here we test 11 plant species across two plant genera, Nepeta and Actinidia, and while we find iridoid compounds in both, only those odorants from Actinidia are noted to be detected by the insect antenna, and in addition, found to be behaviorally active. Moreover, the Actinidia extracts resulted in oviposition avoidance when they were added to fruit samples in the laboratory. Thus we propose the possible efficacy of these plants or their extracted chemistry as a novel means for establishing a cost-effective integrated pest management strategy towards the control of this pest fly

    Mate discrimination among subspecies through a conserved olfactory pathway.

    Get PDF
    Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner

    On the role of NOS1 ex1f-VNTR in ADHD – allelic, subgroup, and meta-analysis

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder featuring complex genetics with common and rare variants contributing to disease risk. In a high proportion of cases, ADHD does not remit during adolescence but persists into adulthood. Several studies suggest that NOS1, encoding nitric oxide synthase I, producing the gaseous neurotransmitter NO, is a candidate gene for (adult) ADHD. We here extended our analysis by increasing the original sample, adding two further samples from Norway and Spain, and conducted subgroup and co-morbidity analysis. Our previous finding held true in the extended sample, and also meta-analysis demonstrated an association of NOS1 ex1fVNTR short alleles with adult ADHD (aADHD). Association was restricted to females, as was the case in the discovery sample. Subgroup analysis on the single allele level suggested that the repeat allele caused the association. Regarding subgroups, we found that NOS1 was associated with the hyperactive/impulsive ADHD subtype, but not to pure inattention. In terms of comorbidity, major depression, anxiety disorders, cluster C personality disorders and migraine were associated with short repeats, in particular the repeat allele. Also, short allele carriers had significantly lower IQ. Finally, we again demonstrated an influence of the repeat on gene expression in human post-mortem brain samples. These data validate the role of NOS-I in hyperactive/impulsive phenotypes and call for further studies into the neurobiological underpinnings of this association.PostprintPeer reviewe
    corecore