822 research outputs found

    Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering

    Get PDF
    Protein degradation is a regulatory process essential to cell viability and its dysfunction is implicated in many diseases, such as aging and neurodegeneration. In this report, stimulated Raman scattering microscopy coupled with metabolic labeling with ^(13)C-phenylalanine is used to visualize protein degradation in living cells with subcellular resolution. We choose the ring breathing modes of endogenous ^(12)C-phenylalanine and incorporated ^(13)C-phenylalanine as protein markers for the original and nascent proteomes, respectively, and the decay of the former wasquantified through ^(12)C/(^(12)C + ^(13)C) ratio maps. We demonstrate time-dependent imaging of proteomic degradation in mammalian cells under steady-state conditions and various perturbations, including oxidative stress, cell differentiation, and huntingtin protein aggregation

    Morphological analysis: to evaluate the pattern of Residential building based on wind performance

    Full text link
    [EN] Residential morphological patterns are reflection of people's living habits and tradition, local climate and building regulations, so that one of those factors could be studied through in order to understand residential morphological patterns. Based upon our previous study, we do know that in China living habits and local climate mainly influence the shape of residential buildings and apartment patterns, but we do not know whether the pattern of residential plots determined by FAR and sunshine hours are suitable for wind environment related to residential environmental quality. Therefore, it is very significant to evaluate wind environment within residential plots based on the apartment pattern controlled by various building codes. Our study focuses on the pattern of Slab apartments in Nanjing, which are mainly used in China, and selects 40 residential slices with different plot shapes, plot FAR, building heights and sizes. Based upon MATLAB, we have got all geometrical data between buildings among these slices to identify the spatial pattern character of each residential plot. Through evaluating wind environment of these slices by simulation we can obtain wind speed, pressure and age of air and choose the pattern of age of air as the main evaluation factor of wind performance. Correlation analysis will be made between the apartment patterns and pattern of age of air, by doing so, each typical space between buildings will be evaluated. Our study will reveal the relevance of apartment pattern and wind environment, which can be used to support and improve design in the future.Yang, Y.; You, W.; Peng, Y.; Ding, W. (2018). Morphological analysis: to evaluate the pattern of Residential building based on wind performance. En 24th ISUF International Conference. Book of Papers. Editorial Universitat Politècnica de València. 1461-1469. https://doi.org/10.4995/ISUF2017.2017.5977OCS1461146

    Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes

    Get PDF
    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of “omics”. As a unique tool for biological discovery, this platform has been applied to studying various metabolic processes under both physiological and pathological states, including protein synthesis activity of neuronal systems, protein aggregations in Huntington disease models, glucose uptake in tumor xenografts, and drug penetration through skin tissues. We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species

    Vibrational Imaging of Glucose Uptake Activity in Live Cells and Tissues by Stimulated Raman Scattering

    Get PDF
    Glucose is a ubiquitous energy source for most living organisms. Its uptake activity closely reflects cellular metabolic demand in various physiopathological conditions. Extensive efforts have been made to specifically image glucose uptake, such as with positron emission tomography, magnetic resonance imaging, and fluorescence microscopy, but all have limitations. A new platform to visualize glucose uptake activity in live cells and tissues is presented that involves performing stimulated Raman scattering on a novel glucose analogue labeled with a small alkyne moiety. Cancer cells with differing metabolic activities can be distinguished. Heterogeneous uptake patterns are observed with clear cell-cell variations in tumor xenograft tissues, neuronal culture, and mouse brain tissues. By offering the distinct advantage of optical resolution but without the undesirable influence of fluorophores, this method will facilitate the study of energy demands of living systems with subcellular resolution

    Analysis of Similarity/Dissimilarity of DNA Sequences Based on Chaos Game Representation

    Get PDF
    The Chaos Game is an algorithm that can allow one to produce pictures of fractal structures. Considering that the four bases A, G, C, and T of DNA sequences can be divided into three classes according to their chemical structure, we propose different kinds of CGR-walk sequences. Based on CGR coordinates of random sequences, we introduce some invariants for the DNA primary sequences. As an application, we can make the examination of similarity/dissimilarity among the first exon of β-globin gene of different species. The results indicate that our method is efficient and can get more biological information

    DV-Curve Representation of Protein Sequences and Its Application

    Get PDF
    Based on the detailed hydrophobic-hydrophilic(HP) model of amino acids, we propose dual-vector curve (DV-curve) representation of protein sequences, which uses two vectors to represent one alphabet of protein sequences. This graphical representation not only avoids degeneracy, but also has good visualization no matter how long these sequences are, and can reflect the length of protein sequence. Then we transform the 2D-graphical representation into a numerical characterization that can facilitate quantitative comparison of protein sequences. The utility of this approach is illustrated by two examples: one is similarity/dissimilarity comparison among different ND6 protein sequences based on their DV-curve figures the other is the phylogenetic analysis among coronaviruses based on their spike proteins

    Numerical investigations on interactions between 2D/3D conical shock wave and axisymmetric boundary layer at Ma=2.2

    Full text link
    Numerical simulation and analysis are carried out on interactions between a 2D/3D conical shock wave and an axisymmetric boundary layer with reference to the experiment by Kussoy et al., in which the shock was generated by a 15-deg half-angle cone in a tube at 15-deg angle of attack (AOA). Based on the RANS equations and Menter's SST turbulence model, the present study uses the newly developed WENO3-PRM211 scheme and the PHengLEI CFD platform for the computations. First, computations are performed for the 3D interaction corresponding to the conditions of the experiment by Kussoy et al., and these are then extended to cases with AOA = 10-deg and 5-deg. For comparison, 2D axisymmetric counterparts of the 3D interactions are investigated for cones coaxial with the tube and having half-cone angles of 27.35-deg, 24.81-deg, and 20.96-deg. The shock wave structure, vortex structure, variable distributions, and wall separation topology of the interaction are computed. The results show that in 2D/3D interactions, a new Mach reflection-like event occurs and a Mach stem-like structure is generated above the front of the separation bubble, which differs from the model of Babinsky for 2D planar shock wave/boundary layer interaction. A new interaction model is established to describe this behavior. The relationship between the length of the circumferentially unseparated region in the tube and the AOA of the cone indicates the existence of a critical AOA at which the length is zero, and a prediction of this angle is obtained using an empirical fit, which is verified by computation. The occurrence of side overflow in the windward meridional plane is analyzed, and a quantitative knowledge is obtained. To elucidate the characteristics of the 3D interaction, the scale and structure of the vortex and the pressure and friction force distributions are presented and compared with those of the 2D interaction

    Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy

    Get PDF
    Three-dimensional visualization of tissue structures using optical microscopy facilitates the understanding of biological functions. However, optical microscopy is limited in tissue penetration due to severe light scattering. Recently, a series of tissue-clearing techniques have emerged to allow significant depth-extension for fluorescence imaging. Inspired by these advances, we develop a volumetric chemical imaging technique that couples Raman-tailored tissue-clearing with stimulated Raman scattering (SRS) microscopy. Compared with the standard SRS, the clearing-enhanced SRS achieves greater than 10-times depth increase. Based on the extracted spatial distribution of proteins and lipids, our method reveals intricate 3D organizations of tumor spheroids, mouse brain tissues, and tumor xenografts. We further develop volumetric phasor analysis of multispectral SRS images for chemically specific clustering and segmentation in 3D. Moreover, going beyond the conventional label-free paradigm, we demonstrate metabolic volumetric chemical imaging, which allows us to simultaneously map out metabolic activities of protein and lipid synthesis in glioblastoma. Together, these results support volumetric chemical imaging as a valuable tool for elucidating comprehensive 3D structures, compositions, and functions in diverse biological contexts, complementing the prevailing volumetric fluorescence microscopy

    Human activities accelerated the degradation of saline seepweed red beaches by amplifying top‐down and bottom‐up forces

    Get PDF
    Salt marshes dominated by saline seepweed (Suaeda heteroptera) provide important ecosystem services such as sequestering carbon (blue carbon), maintaining healthy fisheries, and protecting shorelines. These salt marshes also constitute stunning red beach landscapes, and the resulting tourism significantly contributes to the local economy. However, land use change and degradation have led to a substantial loss of the red beach area. It remains unclear how human activities influence the top‐down and bottom‐up forces that regulate the distribution and succession of these salt marshes and lead to the degradation of the red beaches. We examined how bottom‐up forces influenced the germination, emergence, and colonization of saline seepweed with field measurements and a laboratory experiment. We also examined whether top‐down forces affected the red beach distribution by conducting a field survey for crab burrows and density, laboratory feeding trials, and waterbird investigations. The higher sediment accretion rate induced by human activities limited the establishment of new red beaches. The construction of tourism facilities and the frequent presence of tourists reduced the density of waterbirds, which in turn increased the density of crabs, intensifying the top‐down forces such as predators and herbivores that drive the degradation of the coastal red beaches. Our results show that sediment accretion and plant–herbivory changes induced by human activities were likely the two primary ecological processes leading to the degradation of the red beaches. Human activities significantly shaped the abundance and distribution of the red beaches by altering both top‐down and bottom‐up ecological processes. Our findings can help us better understand the dynamics of salt marshes and have implications for the management and restoration of coastal wetlands
    • …
    corecore