98 research outputs found

    Spin Transport Properties in Heisenberg Antiferromagnetic Spin Chains: Spin Current induced by Twisted Boundary Magnetic Fields

    Full text link
    Spin transport properties of the one-dimensional Heisenberg antiferromagnetic spin systems for both S=1/2S=1/2 and S=1 are studied by applying twisted boundary magnetic field. The spin current displays significantly different behavior of the spin transport properties between S=1/2S=1/2 and S=1 cases. For the spin-half case, a London equation for the current and the detection of an alternating electric field are proposed for the linear response regime. The correlation functions reveal the spiral nature of spin configuration for both ground state and the spinon excitations. For the spin-one chain otherwise, a kink is generated in the ground state for the size is larger than the correlation length, leading to an exponential dependence of spin current with respect to the chains length. The midgap state emerges from the degenerate ground state even for small boundary fields.Comment: 4 pages, 5 figure

    Kondo Signatures of a Quantum Magnetic Impurity in Topological Superconductors

    Full text link
    We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support a robust impurity spin doublet ground state and an isotropic spin correlation. These findings advance fundamental knowledge of novel Kondo phenomena in TSCs and suggest experimental avenues for their detection and distinction

    Radiofrequency ablation can reverse the structural remodeling caused by frequent premature ventricular contractions originating from the right ventricular outflow tract even in a normal heart

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate whether frequent premature ventricular contractions originating from the right ventricular outflow tract remodel the cardiac structure and function in patients with a “seemingly normal heart” and whether radiofrequency ablation can reverse this remodeling. METHODS: Sixty-eight patients with idiopathic frequent premature ventricular contractions originating from the right ventricular outflow tract and normal heart structure and function were enrolled in this study. The patients were divided into three groups according to the therapeutic method: radiofrequency ablation group (24 cases), anti-arrhythmia drug group (26 cases), and control group (18 cases without any treatment). Clinical Registration number: ChiCTR-ONRC-12002834 RESULTS: The basic patient characteristics were comparable between the three groups, except for the premature ventricular contraction rate, which was significantly lower in the control group. After six months of follow up, the premature ventricular contraction rate was significantly reduced in the radiofrequency ablation group, which was accompanied by a significant decrease in the following cardiac cavity inner diameters, as determined by echocardiography: right atrium (33.33±3.78 vs. 30.05±2.60 mm, p = 0.001), right ventricle (23.24±2.40 vs. 21.05±2.16 mm, p = 0.020), and left ventricle (44.76±4.33 vs. 41.71±3.44 mm, p = 0.025). These results were similar in the anti-arrhythmia drug group, although this group exhibited a smaller extent of change (right atrium: 33.94±3.25 vs. 31.27±3.11 mm, p = 0.024; right ventricle: 22.97±3.09 vs. 21.64±2.33 mm, p = 0.049; left ventricle: 45.92±6.38 vs. 43.84±5.67 mm, p = 0.039), but not in the control group (p>;0.05). There was a tendency toward improvement in the cardiac functions in both the radiofrequency ablation and anti-arrhythmia drug groups. However, these differences were not statistically significant (p>;0.05). CONCLUSIONS: These results indicate that radiofrequency ablation can potentially reverse the cardiac remodeling caused by frequent premature ventricular contractions even in structurally normal hearts and that frequent premature ventricular contractions should be abated even in structurally normal hearts

    A single nucleotide variant in HNF-1ÎČ is associated with maturity-onset diabetes of the young in a large Chinese family

    Get PDF
    Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous entity of monogenic disorders characterized by autosomal dominant inheritance. Eleven genes were related, including HNF4α, GCK, HNF1α, IPF1, and HNF-1ÎČ, and various mutations are being reported. Methods: To help the overall understanding of MODY-related pathologic mutations, we studied a large MODY family found in 2012, in Shandong, China, which contained 9 patients over 3 generations. DNA was extracted from the periphery blood samples of (i) 9 affected members, (ii) 17 unaffected members, and (iii) 1000 healthy controls. Three pooled samples were obtained by mixing equal quantity of DNA of each individual within the each group. Totally 400 microsatellite markers across the whole genome were genotyped by capillary electrophoresis. The known MODY-related gene near the identified marker was sequenced to look for putative risk variants. Results: Allelic frequency of marker D17S798 on chromosome 17q11.2 were significantly different (P<0.001) between the affected vs. unaffected members and the affected vs. healthy controls, but not between the unaffected members vs. healthy controls. MODY5-related gene, hepatocyte nuclear factor-1ÎČ (HNF-1ÎČ) on 17q12 near D17S798 became the candidate gene. A single nucleotide variant (SNV) of C77T in the non-coding area of exon 1 of HNF-1ÎČ was found to be related to MODY5. Conclusion: This novel SNV of HNF-1ÎČ contributes to the diabetes development in the family through regulating gene expression most likely. The findings help presymptomatic diagnosis, and imply that mutations in the non-coding areas, as well as in the exons, play roles in the etiology of MODY

    Immune Checkpoint Axes Are Dysregulated in Patients With Alcoholic Hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a severe inflammatory liver disease that develops in some heavy drinkers. The immune system in patients with AH is hyperactive and yet dysfunctional. Here, we investigated whether this immune‐dysregulated state is related to the alcoholic impact on immune checkpoints (ICPs). We used multiplex immunoassays and enzyme‐linked immunosorbent assay to quantify plasma levels of 18 soluble ICPs (sICPs) from 81 patients with AH, 65 heavy drinkers without liver diseases (HDCs), and 39 healthy controls (HCs) at baseline, 33 patients with AH and 32 HDCs at 6‐month follow‐up, and 18 patients with AH and 29 HDCs at 12‐month follow‐up. We demonstrated that baseline levels of 6 sICPs (soluble T‐cell immunoglobulin and mucin domain 3 [sTIM‐3], soluble cluster of differentiation [sCD]27, sCD40, soluble Toll‐like receptor‐2 [sTLR‐2], soluble herpesvirus entry mediator [sHVEM], and soluble lymphotoxin‐like inducible protein that competes with glycoprotein D for herpes virus entry on T cells [sLIGHT]) were up‐regulated, while 11 sICPs (soluble B‐ and T‐lymphocyte attenuator [sBTLA], sCD160, soluble cytotoxic T‐lymphocyte‐associated protein 4 [sCTLA‐4], soluble lymphocyte‐activation gene 3 [sLAG‐3], soluble programmed death 1 [sPD‐1], sPD ligand 1 [sPD‐L1], sCD28, soluble glucocorticoid‐induced tumor necrosis factor receptor‐related protein [sGITR], sGITR ligand [sGITRL], sCD80, and inducible T‐cell costimulator [sICOS]) were down‐regulated in patients with AH compared to HDCs. The up‐regulated sICPs except sLIGHT and down‐regulated sCD80, sCD160, sCTLA‐4, and sLAG‐3 correlated positively or negatively with AH disease severity, bacterial translocation, and inflammatory factors. At follow‐up, abstinent patients with AH still had higher levels of several sICPs compared to HDCs. We also compared expression of 10 membrane‐bound ICPs (mICPs) on peripheral blood mononuclear cells (PBMCs) from patients with AH and HCs by flow cytometry and found that several mICPs were dysregulated on blood cells from patients with AH. The function and regulation of sICPs and mICPs were studied using PBMCs from patients with AH and HCs. Recombinant sHVEM affected tumor necrosis factor (TNF)‐α and interferon‐γ production by T cells from patients with AH and HCs. Conclusion: Both sICPs and mICPs were dysregulated in patients with AH, and alcohol abstinence did not fully reverse these abnormalities. The HVEM axis plays a role in regulating T‐cell function in patients with AH

    SLIT2/ROBO1-miR-218-1-RET/PLAG1: a new disease pathway involved in Hirschsprung\u27s disease.

    Get PDF
    Hirschsprung\u27s disease (HSCR) is a rare congenital disease caused by impaired proliferation and migration of neural crest cells. We investigated changes in expression of microRNAs (miRNAs) and the genes they regulate in tissues of patients with HSCR. Quantitative real-time PCR and immunoblot analyses were used to measure levels of miRNA, mRNAs, and proteins in colon tissues from 69 patients with HSCR and 49 individuals without HSCR (controls). Direct interactions between miRNAs and specific mRNAs were indentified in vitro, while the function role of miR-218-1 was investigated by using miR-218 transgenic mice. An increased level of miR-218-1 correlated with increased levels of SLIT2 and decreased levels of RET and PLAG1 mRNA and protein. The reductions in RET and PLAG1 by miR-218-1 reduced proliferation and migration of SH-SY5Y cells. Overexpression of the secreted form of SLIT2 inhibited cell migration via binding to its receptor ROBO1. Bowel tissues from miR-218-1 transgenic mice had nerve fibre hyperplasia and reduced numbers of gangliocytes, compared with wild-type mice. Altered miR-218-1 regulation of SLIT2, RET and PLAG1 might be involved in the pathogenesis of HSCR

    Persistent Hyperactivation of Endothelial Cells in Patients with Alcoholic Hepatitis

    Get PDF
    Background: Alcoholic hepatitis (AH) is a severe inflammatory liver disease that develops in some heavy drinkers. AH patients have intense hepatic infiltration of leukocytes. Up-regulation of cell adhesion molecules (CAMs) upon endothelial cell (EC) activation plays an important role in leukocyte transendothelial migration. CAMs can shed from EC surface and accumulate in the blood, serving as soluble markers for EC activation. In this study, we examined the impact of heavy drinking on expression of soluble forms of EC activation markers (CD146, ICAM-1, VCAM-1, and VEGF-A) and the effect of alcohol abstinence on the reversal of these abnormalities in heavy drinkers with and without AH. Methods: ELISA and multiplex immunoassays were used to measure soluble EC activation markers in plasma samples from 79 AH patients, 66 heavy drinkers without overt liver disease (HDC), and 44 healthy controls (HC) at baseline, 31 AH patients and 30 HDC at 6-month follow-up, and 18 AH patients and 25 HDC at 12-month follow-up. Results: At baseline, the 4 soluble markers were significantly up-regulated in AH patients compared with HDC and HC, whereas only sVCAM-1 was elevated in HDC relative to HC. At follow-ups, plasma levels of CD146, VCAM-1, and VEGF-A remained higher in AH patients, even for those who stopped drinking. These dysregulated markers correlated with AH disease severity, clinical parameters, and several soluble inflammatory factors. Conclusions: The levels of soluble CD146, ICAM-1, VCAM-1, and VEGF-A were highly elevated in AH patients, and alcohol abstinence did not completely reverse these abnormalities
    • 

    corecore