47,257 research outputs found

    Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.

    Get PDF
    BackgroundThere are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.ResultsWe morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.ConclusionsTaken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation

    Separability in Cohomogeneity-2 Kerr-NUT-AdS Metrics

    Get PDF
    The remarkable and unexpected separability of the Hamilton-Jacobi and Klein-Gordon equations in the background of a rotating four-dimensional black hole played an important role in the construction of generalisations of the Kerr metric, and in the uncovering of hidden symmetries associated with the existence of Killing tensors. In this paper, we show that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-AdS backgrounds in all dimensions, if one specialises the rotation parameters so that the metrics have cohomogeneity 2. Furthermore, we show that this property of separability extends to the NUT generalisations of these cohomogeneity-2 black holes that we obtained in a recent paper. In all these cases, we also construct the associated irreducible rank-2 Killing tensor whose existence reflects the hidden symmetry that leads to the separability. We also consider some cohomogeneity-1 specialisations of the new Kerr-NUT-AdS metrics, showing how they relate to previous results in the literature.Comment: Latex, 15 pages, minor typos correcte

    Spectrum of low-lying s3QQˉs^{3}Q\bar{Q} configurations with negative parity

    Full text link
    Spectrum of low-lying five-quark configurations with strangeness quantum number S=3S=-3 and negative parity is studied in three kinds of constituent quark models, namely the one gluon exchange, Goldstone Boson exchange, and instanton-induced hyperfine interaction models, respectively. Our numerical results show that the lowest energy states in all the three employed models are lying at \sim1800 MeV, about 200 MeV lower than predictions of various quenched three-quark models. In addition, it is very interesting that the state with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in the other two models.Comment: Version published in Phys. Rev.

    Measuring the Fourth Generation b --> s Quadrangle at the LHC

    Full text link
    We show that simultaneous precision measurement of the CP-violating phase in time-dependent Bs --> J/psi phi study and the Bs --> mu+ mu- rate, together with measuring m_t' by direct search at the LHC, would determine V_{t's}^*V_{t'b} and therefore the b --> s quadrangle in the four-generation standard model. The forward-backward asymmetry in B --> K* l+ l- provides further discrimination.Comment: 6 pages, 7 figures, revised based on LHC results released in this summer, to appear in PR

    Morphological evolution of a 3D CME cloud reconstructed from three viewpoints

    Full text link
    The propagation properties of coronal mass ejections (CMEs) are crucial to predict its geomagnetic effect. A newly developed three dimensional (3D) mask fitting reconstruction method using coronagraph images from three viewpoints has been described and applied to the CME ejected on August 7, 2010. The CME's 3D localisation, real shape and morphological evolution are presented. Due to its interaction with the ambient solar wind, the morphology of this CME changed significantly in the early phase of evolution. Two hours after its initiation, it was expanding almost self-similarly. CME's 3D localisation is quite helpful to link remote sensing observations to in situ measurements. The investigated CME was propagating to Venus with its flank just touching STEREO B. Its corresponding ICME in the interplanetary space shows a possible signature of a magnetic cloud with a preceding shock in VEX observations, while from STEREO B only a shock is observed. We have calculated three principle axes for the reconstructed 3D CME cloud. The orientation of the major axis is in general consistent with the orientation of a filament (polarity inversion line) observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis from VEX indicates a radial-directed axis orientation. It might be that locally only the leg of the flux rope passed through VEX. The height and speed profiles from the Sun to Venus are obtained. We find that the CME speed possibly had been adjusted to the speed of the ambient solar wind flow after leaving COR2 field of view and before arriving Venus. A southward deflection of the CME from the source region is found from the trajectory of the CME geometric center. We attribute it to the influence of the coronal hole where the fast solar wind emanated from.Comment: ApJ, accepte

    Loschmidt echo and fidelity decay near an exceptional point

    Get PDF
    Non-Hermitian classical and open quantum systems near an exceptional point (EP) are known to undergo strong deviations in their dynamical behavior under small perturbations or slow cycling of parameters as compared to Hermitian systems. Such a strong sensitivity is at the heart of many interesting phenomena and applications, such as the asymmetric breakdown of the adiabatic theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions and photonic catastrophe. Like for Hermitian systems, the sensitivity to perturbations on the dynamical evolution can be captured by Loschmidt echo and fidelity after imperfect time reversal or quench dynamics. Here we disclose a rather counterintuitive phenomenon in certain non-Hermitian systems near an EP, namely the deceleration (rather than acceleration) of the fidelity decay and improved Loschmidt echo as compared to their Hermitian counterparts, despite large (non-perturbative) deformation of the energy spectrum introduced by the perturbations. This behavior is illustrated by considering the fidelity decay and Loschmidt echo for the single-particle hopping dynamics on a tight-binding lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi

    Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community

    Full text link
    © 2018 Elsevier Ltd Partial nitrification granular sludge was successfully cultivated in a sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (Anammox) through shortening settling time. After 250-days operation, the effluent NH4+-N and NO2−-N concentrations were average at 277.5 and 280.5 mg/L with nitrite accumulation rate of 87.8%, making it as an ideal influent for Anammox. Simultaneous free ammonia (FA) and free nitrous acid (FNA) played major inhibitory roles on the activity of nitrite oxidizing bacteria (NOB). The MLSS and SVI30 of partial nitrification reactor were 14.6 g/L and 25.0 mL/g, respectively. Polysaccharide (PS) and protein (PN) amounts in extracellular polymeric substances (EPS) from granular sludge were about 1.3 and 2.8 times higher than from seed sludge. High-throughput pyrosequencing results indicated that Nitrosomonas affiliated to the ammonia oxidizing bacteria (AOB) was the predominant group with a proportion of 24.1% in the partial nitrification system
    corecore