13 research outputs found

    Enteric Aeromonas Infection: a Common Enteric Bacterial Infection with a Novel Infection Pattern Detected in an Australian Population with Gastroenteritis

    No full text
    ABSTRACT Aeromonas species are emerging human enteric pathogens. However, they are currently not routinely detected in many diagnostic laboratories, and information regarding Aeromonas enteric infections detected using molecular methods is lacking. Here, we investigated the detection of Aeromonas species and four other enteric bacterial pathogens in 341,330 fecal samples from patients with gastroenteritis processed in a large Australian diagnostic laboratory between 2015 and 2019. These enteric pathogens were detected using quantitative real-time PCR (qPCR) methods. Furthermore, we compared the qPCR cycle threshold (CT) values obtained from fecal samples that tested positive for Aeromonas only by molecular detection with those of samples that tested positive by both molecular detection and bacterial isolation methods. Aeromonas species were found to be the second most common bacterial enteric pathogens among patients with gastroenteritis. We observed a unique pattern of three infection peaks for Aeromonas, which correlated with the age of the patients. Aeromonas species were the most common enteric bacterial pathogens in children younger than 18 months. Fecal samples that tested positive for Aeromonas only by molecular detection had significantly higher CT values than fecal samples that tested positive by both molecular detection and bacterial culture. In conclusion, our findings reveal that Aeromonas enteric pathogens exhibit an age-related three-peak infection pattern, distinguishing them from other enteric bacterial pathogens. Moreover, the high rate of Aeromonas enteric infection discovered in this study suggests that Aeromonas species should be routinely tested in diagnostic laboratories. Our data also show that combining qPCR with bacterial culture can enhance the detection of enteric pathogens. IMPORTANCE Aeromonas species are emerging human enteric pathogens. However, these species are currently not routinely detected in many diagnostic laboratories, and no studies have reported the detection of Aeromonas enteric infection using molecular methods. We investigated the presence of Aeromonas species and four other enteric bacterial pathogens in 341,330 fecal samples from patients with gastroenteritis using quantitative real-time PCR (qPCR) methods. Interestingly, we discovered that Aeromonas species were the second most common bacterial enteric pathogens in patients with gastroenteritis, exhibiting a novel infection pattern compared to those of other enteric pathogens. Furthermore, we found that Aeromonas species were the most prevalent enteric bacterial pathogens in children aged 6 to 18 months. Our data also revealed that qPCR methods exhibit higher sensitivity in detecting enteric pathogens compared to that of bacterial culture alone. Moreover, combining qPCR with bacterial culture enhances the detection of enteric pathogens. These findings emphasize the importance of Aeromonas species in public health

    Methicillin-resistant Staphylococcus aureus vancomycin susceptibility testing: Methodology correlations, temporal trends and clonal patterns

    No full text
    Objectives: To determine the correlation between various vancomycin MIC testing methodologies and explore the phenomenon of MIC creep

    A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain

    No full text
    Three patients with severe Clostridium difficile infection (CDI) caused by an unusual strain of C. difficile, PCR ribotype (RT) 251, were identified in New South Wales, Australia. All cases presented with severe diarrhoea, two had multiple recurrences and one died following a colectomy. C. difficile RT251 strains were isolated by toxigenic culture. Genetic characterisation was performed using techniques including toxin gene profiling, PCR ribotyping, whole genome sequencing (WGS), in-silico multi-locus-sequence-typing (MLST) and core-genome single nucleotide variant (SNV) analyses. Antimicrobial susceptibility was determined using an agar incorporation method. In vitro toxin production was confirmed by Vero cell cytotoxicity assay and pathogenicity was assessed in a murine model of CDI. All RT251 isolates contained toxin A (tcdA), toxin B (tcdB) and binary toxin (cdtA and cdtB) genes. Core-genome analyses revealed the RT251 strains were clonal, with 0–5 SNVs between isolates. WGS and MLST clustered RT251 in the same evolutionary clade (clade 2) as RT027. Despite comparatively lower levels of in vitro toxin production, in the murine model RT251 infection resembled RT027 infection. Mice showed marked weight loss, severe disease within 48 h post-infection and death. All isolates were susceptible to metronidazole and vancomycin. Our observations suggest C. difficile RT251 causes severe disease and emphasise the importance of ongoing surveillance for new and emerging strains of C. difficile with enhanced virulence

    An evaluation of 4 commercial assays for the detection of SARS-CoV-2 antibodies in a predominantly mildly symptomatic low prevalence Australian population

    No full text
    A total of 1080 individual patient samples (158 positive serology samples from confirmed, predominantly mildly symptomatic COVID-19 patients and 922 serology negative including 496 collected pre-COVID) from four states in Australia were analysed on four commercial SARS-CoV-2 serological assays targeting antibodies to different antigens (Roche Elecsys and Abbott Architect: nucleocapsid; Diasorin Liaison and Euroimmun: spike). A subset was compared to immunofluorescent antibody (IFA) and micro-neutralisation. Sensitivity and specificity of the Roche (n = 1033), Abbott (n = 806), Diasorin (n = 1034) and Euroimmun (n = 175) were 93.7 %/99.5 %, 90.2 %/99.4 %, 88.6 %/98.6 % and 91.3 %/98.8 %, respectively. ROC analysis with specificity held at 99 % increased the sensitivity for the Roche and Abbott assays from 93.7% to 98.7% (cut-off 0.21) and 90.2 % to 94.0 % (cut-off 0.91), respectively. Overall seropositivity of samples increased from a maximum of 23 % for samples 0-7 days-post-onset of symptoms (dpos), to 61 % from samples 8-14dpos and 93 % from those >14dpos. IFA and microneutralisation values correlated best with assays targeting antibodies to spike protein with values >80 AU/mL on the Diasorin assay associated with neutralising antibody. Detectable antibody was present in 22/23 (96 %), 20/23 (87 %), 15/23 (65 %) and 9/22 (41 %) patients with samples >180dpos on the Roche, Diasorin, Abbott and microneutralisation assays respectively. Given the low prevalence in this community, two-step algorithms on initial positive results saw an increase in the positive predictive value (PPV) of positive samples (39 %-65 % to ≥98 %) for all combinations. Similarly accuracy increased from a range of 98.5 %-99.4 % to ≥99.8 % assuming a 1 % seroprevalence. Negative predictive value (NPV) was high (≥99.8 %) regardless of which assay was used initially

    Illness severity in community-onset invasive Staphylococcus aureus infection and the presence of virulence genes

    No full text
    Background. It is uncertain whether particular clones causing invasive community-onset methicillin-resistant and methicillin-sensitive Staphylococcus aureus (cMRSA/cMSSA) infection differ in virulence.Methods.Invasive cMRSA and cMSSA cases were prospectively identified. Principal component analysis was used to derive an illness severity score (ISS) from clinical data, including 30-day mortality, requirement for intensive hospital support, the presence of bloodstream infection, and hospital length of stay. The mean ISS for each S. aureus clone (based on MLST) was compared with its DNA microarray-based genotype.Results.Fifty-seven cMRSA and 50 cMSSA infections were analyzed. Ten clones caused 82 (77) of these infections and had an ISS calculated. The enterotoxin gene cluster (egc) and the collagen adhesin (cna) gene were found in 4 of the 5 highest-ranked clones (ST47-MSSA, ST30-MRSA-IV[2B], ST45-MSSA, and ST22-MRSA-IV[2B]) compared with none and 1 of the lowest 5 ranked clones, respectively. cMSSA clones caused more severe infection than cMRSA clones. The lukF/lukS Panton-Valentine leukocidin (PVL) genes did not directly correlate with the ISS, being present in the second, fourth, and 10th most virulent clones.Conclusions.The clinical severity of invasive cMRSA and cMSSA infection is likely to be attributable to the isolates' entire genotype rather than a single putative virulence determinant such as PVL

    Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015-18

    No full text
    Background: Clostridioides difficile was listed as an urgent antimicrobial resistance (AMR) threat in a report by the CDC in 2019. AMR drives the evolution of C. difficile and facilitates its emergence and spread. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is nationwide longitudinal surveillance of C. difficile infection (CDI) in Australia. Objectives: To determine the antimicrobial susceptibility of C. difficile isolated in Australia between 2015 and 2018. Methods: A total of 1091 strains of C. difficile were collected over a 3 year period by a network of 10 diagnostic microbiology laboratories in five Australian states. These strains were tested for their susceptibility to nine antimicrobials using the CLSI agar incorporation method. Results: All strains were susceptible to metronidazole, fidaxomicin, rifaximin and amoxicillin/clavulanate and low numbers of resistant strains were observed for meropenem (0.1%; 1/1091), moxifloxacin (3.5%; 38/1091) and vancomycin (5.7%; 62/1091). Resistance to clindamycin was common (85.2%; 929/1091), followed by resistance to ceftriaxone (18.8%; 205/1091). The in vitro activity of fidaxomicin [geometric mean MIC (GM)=0.101 mg/L] was superior to that of vancomycin (1.700 mg/L) and metronidazole (0.229 mg/L). The prevalence of MDR C. difficile, as defined by resistance to ≥ 3 antimicrobial classes, was low (1.7%; 19/1091). Conclusions: The majority of C. difficile isolated in Australia did not show reduced susceptibility to antimicrobials recommended for treatment of CDI (vancomycin, metronidazole and fidaxomicin). Resistance to carbapenems and fluoroquinolones was low and MDR was uncommon; however, clindamycin resistance was frequent. One fluoroquinolone-resistant ribotype 027 strain was detected
    corecore