1,030 research outputs found
Influence of Noise on Force Measurements
We demonstrate how the ineluctable presence of thermal noise alters the
measurement of forces acting on microscopic and nanoscopic objects. We quantify
this effect exemplarily for a Brownian particle near a wall subjected to
gravitational and electrostatic forces. Our results demonstrate that the force
measurement process is prone to artifacts if the noise is not correctly taken
into account.Comment: 4 Pages, 4 Figures, Accepte
Ground State Energy of the One-Dimensional Discrete Random Schr\"{o}dinger Operator with Bernoulli Potential
In this paper, we show the that the ground state energy of the one
dimensional Discrete Random Schroedinger Operator with Bernoulli Potential is
controlled asymptotically as the system size N goes to infinity by the random
variable \ell_N, the length the longest consecutive sequence of sites on the
lattice with potential equal to zero. Specifically, we will show that for
almost every realization of the potential the ground state energy behaves
asymptotically as in the sense that the ratio of
the quantities goes to one
Disorder-Induced Order in Quantum XY Chains
We observe signatures of disorder-induced order in 1D XY spin chains with an
external, site-dependent uni-axial random field within the XY plane. We
numerically investigate signatures of a quantum phase transition at T=0, in
particular an upsurge of the magnetization in the direction orthogonal to the
external magnetic field, and the scaling of the block-entropy with the
amplitude of this field. Also, we discuss possible realizations of this effect
in ultra-cold atom experiments
Survey and Digital Documentation of Endangered Temple Wall Paintings in Shanxi Province, China
Shanxi Province is at the heart of China, and home to some of its richest architectural heritage. Covering an area of 156,000 square kilometres the Province is larger than England and Wales combined. Many earthen and timber buildings and temples contain wall paintings, witnessing Chinese folk religion, Buddhist and Daoist beliefs. Scattered over a large geographic area these remote village temples present a fairyland of Chinese traditional folklore. Many of these sites are endangered, and most are unrecorded.
Funded by Arcadia, a charitable trust fund of Lisbet Rausing and Peter Baldwin, the Shanxi Digital Documentation of Endangered Temple Wall Painting Project (SDDP) is a four-year programme (2018–2021) aimed at recording these historic temples and wall paintings using high-resolution photographic and three-dimensional photogrammetric techniques, and also including selective capture of multi-spectral imagery. These records will form an open-access digital archive of temple paintings and associated architecture, structured by a Chinese-English bilingual database.
The SDDP is a partnership between Zhejiang University, Shanxi Institute of Architecture Conservation and University College London (represented by two research centres within the Institute of Archaeology: the International Centre for Chinese Heritage and Archaeology and the Centre for Applied Archaeology). The programme of survey and research is guided by the Shanxi Provincial Bureau of Cultural Heritage (SBCH) and an international advisory board
Does Amazon forest leaf phenology mediate transpiration seasonality and hence, ecoclimate teleconnections?
Abstract OOS 11-5
Expression of Lineage Transcription Factors Identifies Differences in Transition States of Induced Human Oligodendrocyte Differentiation
Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology
Recommended from our members
Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes.
BACKGROUND: Several interventions increase lifespan in model organisms, including reduced insulin/insulin-like growth factor-like signaling (IIS), FOXO transcription factor activation, dietary restriction, and superoxide dismutase (SOD) over-expression. One question is whether these manipulations function through different mechanisms, or whether they intersect on common processes affecting aging. RESULTS: A doxycycline-regulated system was used to over-express manganese-SOD (MnSOD) in adult Drosophila, yielding increases in mean and maximal lifespan of 20%. Increased lifespan resulted from lowered initial mortality rate and required MnSOD over-expression in the adult. Transcriptional profiling indicated that the expression of specific genes was altered by MnSOD in a manner opposite to their pattern during normal aging, revealing a set of candidate biomarkers of aging enriched for carbohydrate metabolism and electron transport genes and suggesting a true delay in physiological aging, rather than a novel phenotype. Strikingly, cross-dataset comparisons indicated that the pattern of gene expression caused by MnSOD was similar to that observed in long-lived Caenorhabditis elegans insulin-like signaling mutants and to the xenobiotic stress response, thus exposing potential conserved longevity promoting genes and implicating detoxification in Drosophila longevity. CONCLUSION: The data suggest that MnSOD up-regulation and a retrograde signal of reactive oxygen species from the mitochondria normally function as an intermediate step in the extension of lifespan caused by reduced insulin-like signaling in various species. The results implicate a species-conserved net of coordinated genes that affect the rate of senescence by modulating energetic efficiency, purine biosynthesis, apoptotic pathways, endocrine signals, and the detoxification and excretion of metabolites.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Calculations of the Knight Shift Anomalies in Heavy Electron Materials
We have studied the Knight shift and magnetic susceptibility
of heavy electron materials, modeled by the infinite U Anderson model
with the NCA method. A systematic study of and for
different Kondo temperatures (which depends on the hybridization width
) shows a low temperature anomaly (nonlinear relation between and
) which increases as the Kondo temperature and distance
increase. We carried out an incoherent lattice sum by adding the of
a few hundred shells of rare earth atoms around a nucleus and compare the
numerically calculated results with the experimental results. For CeSn_3, which
is a concentrated heavy electron material, both the ^{119}Sn NMR Knight shift
and positive muon Knight shift are studied. Also, lattice coherence effects by
conduction electron scattering at every rare earth site are included using the
average-T matrix approximation. Also NMR Knight shifts for YbCuAl and the
proposed quadrupolar Kondo alloy Y_{0.8}U_{0.2}Pd_{3} are studied.Comment: 31 pages of RevTex, 22 Postscript figures, submmitted to PRB, some
figures are delete
Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement
<div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div
- …