27 research outputs found
L444P Gba1 mutation increases formation and spread of α-synuclein deposits in mice injected with mouse α-synuclein pre-formed fibrils.
Parkinson disease is the most common neurodegenerative movement disorder, estimated to affect one in twenty-five individuals over the age of 80. Mutations in glucocerebrosidase 1 (GBA1) represent the most common genetic risk factor for Parkinson disease. The link between GBA1 mutations and α-synuclein accumulation, a hallmark of Parkinson disease, is not fully understood. Following our recent finding that Gba1 mutations lead to increased α-synuclein accumulation in mice, we have studied the effects of a single injection of mouse α-synuclein pre-formed fibrils into the striatum of Gba1 mice that carry a L444P knock-in mutation. We found significantly greater formation and spread of α-synuclein inclusions in Gba1-transgenic mice compared to wild-type controls. This indicates that the Gba1 L444P mutation accelerates α-synuclein pathology and spread
CSP alpha reduces aggregates and rescues striatal dopamine release in alpha-synuclein transgenic mice
alpha-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSP alpha) and alpha-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSP alpha is a member of the DNAJ/HSP40 family of co-chaperones and like alpha-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release. alpha-Synuclein can rescue neurodegeneration in CSP alpha KO mice. However, whether alpha-synuclein aggregation alters CSP alpha expression and function is unknown. Here we show that alpha-synuclein aggregation at the synapse is associated with a decrease in synaptic CSP alpha and a reduction in the complexes that CSP alpha forms with HSC70 and STG alpha. We further show that viral delivery of CSP alpha rescues in uitro the impaired vesicle recycling in PC12 cells with alpha-synuclein aggregates and in uiuo reduces synaptic alpha-synuclein aggregates increasing monomeric alpha-synuclein and restoring normal dopamine release in 1-120h alpha Syn mice. These novel findings reveal a mechanism by which alpha-synuclein aggregation alters CSP alpha at the synapse, and show that CSP alpha rescues alpha-synuclein aggregation-related phenotype in 1-120h alpha Syn mice similar to the effect of alpha-synuclein in CSP alpha KO mice. These results implicate CSP alpha as a potential therapeutic target for the treatment of earlystage Parkinson's disease
Recommended from our members
Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model.
Parkinson's disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20-500 nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b's function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD
Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism
YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology
Recommended from our members
L444P Gba1 mutation increases formation and spread of α-synuclein deposits in mice injected with mouse α-synuclein pre-formed fibrils.
Parkinson disease is the most common neurodegenerative movement disorder, estimated to affect one in twenty-five individuals over the age of 80. Mutations in glucocerebrosidase 1 (GBA1) represent the most common genetic risk factor for Parkinson disease. The link between GBA1 mutations and α-synuclein accumulation, a hallmark of Parkinson disease, is not fully understood. Following our recent finding that Gba1 mutations lead to increased α-synuclein accumulation in mice, we have studied the effects of a single injection of mouse α-synuclein pre-formed fibrils into the striatum of Gba1 mice that carry a L444P knock-in mutation. We found significantly greater formation and spread of α-synuclein inclusions in Gba1-transgenic mice compared to wild-type controls. This indicates that the Gba1 L444P mutation accelerates α-synuclein pathology and spread
Recommended from our members
L444P Gba1 mutation increases formation and spread of α-synuclein deposits in mice injected with mouse α-synuclein pre-formed fibrils
Parkinson disease is the most common neurodegenerative movement disorder, estimated to affect one in twenty-five individuals over the age of 80. Mutations in glucocerebrosidase 1 (GBA1) represent the most common genetic risk factor for Parkinson disease. The link between GBA1 mutations and α-synuclein accumulation, a hallmark of Parkinson disease, is not fully understood. Following our recent finding that Gba1 mutations lead to increased α-synuclein accumulation in mice, we have studied the effects of a single injection of mouse α-synuclein pre-formed fibrils into the striatum of Gba1 mice that carry a L444P knock-in mutation. We found significantly greater formation and spread of α-synuclein inclusions in Gba1-transgenic mice compared to wild-type controls. This indicates that the Gba1 L444P mutation accelerates α-synuclein pathology and spread
Repeated measures two-way ANOVA statistics for dendritic measures as a function of distance from the soma at 13 weeks.
<p>Repeated measures two-way ANOVA statistics for dendritic measures as a function of distance from the soma at 13 weeks.</p
Repeated measures two-way ANOVA statistics for dendritic measures as a function of distance from the soma at 16 weeks.
<p>Repeated measures two-way ANOVA statistics for dendritic measures as a function of distance from the soma at 16 weeks.</p
Repeated measures multivariate ANOVA statistics for dendritic measures as a function of distance from the soma across age.
<p>Repeated measures multivariate ANOVA statistics for dendritic measures as a function of distance from the soma across age.</p