3,349 research outputs found

    Rigid unit modes in tetrahedral crystals

    Full text link
    The 'rigid unit mode' (RUM) model requires unit blocks, in our case tetrahedra of SiO_4 groups, to be rigid within first order of the displacements of the O-ions. The wave-vectors of the lattice vibrations, which obey this rigidity, are determined analytically. Lattices with inversion symmetry yield generically surfaces of RUMs in reciprocal space, whereas lattices without this symmetry yield generically lines of RUMs. Only in exceptional cases as in beta-quartz a surface of RUMs appears, if inversion symmetry is lacking. The occurence of planes and bending surfaces, straight and bent lines is discussed. Explicit calculations are performed for five modifications of SiO_2 crystals.Comment: 18 pages, 6 figures, improved notatio

    A metal-insulator transition as a quantum glass problem

    Full text link
    We discuss a recent mapping of the Anderson-Mott metal-insulator transition onto a random field magnet problem. The most important new idea introduced is to describe the metal-insulator transition in terms of an order parameter expansion rather than in terms of soft modes via a nonlinear sigma model. For spatial dimensions d>6 a mean field theory gives the exact critical exponents. In an epsilon expansion about d=6 the critical exponents are identical to those for a random field Ising model. Dangerous irrelevant quantum fluctuations modify Wegner's scaling law relating the conductivity exponent to the correlation or localization length exponent. This invalidates the bound s>2/3 for the conductivity exponent s in d=3. We also argue that activated scaling might be relevant for describing the AMT in three-dimensional systems.Comment: 10 pp., REvTeX, 1 eps fig., Sitges Conference Proceedings, final version as publishe

    Limit cycles of effective theories

    Get PDF
    A simple example is used to show that renormalization group limit cycles of effective quantum theories can be studied in a new way. The method is based on the similarity renormalization group procedure for Hamiltonians. The example contains a logarithmic ultraviolet divergence that is generated by both real and imaginary parts of the Hamiltonian matrix elements. Discussion of the example includes a connection between asymptotic freedom with one scale of bound states and the limit cycle with an entire hierarchy of bound states.Comment: 8 pages, 3 figures, revtex

    Mesons in (2+1) Dimensional Light Front QCD. II. Similarity Renormalization Approach

    Get PDF
    Recently we have studied the Bloch effective Hamiltonian approach to bound states in 2+1 dimensional gauge theories. Numerical calculations were carried out to investigate the vanishing energy denominator problem. In this work we study similarity renormalization approach to the same problem. By performing analytical calculations with a step function form for the similarity factor, we show that in addition to curing the vanishing energy denominator problem, similarity approach generates linear confining interaction for large transverse separations. However, for large longitudinal separations, the generated interaction grows only as the square root of the longitudinal separation and hence produces violations of rotational symmetry in the spectrum. We carry out numerical studies in the G{\l}azek-Wilson and Wegner formalisms and present low lying eigenvalues and wavefunctions. We investigate the sensitivity of the spectra to various parameterizations of the similarity factor and other parameters of the effective Hamiltonian, especially the scale σ\sigma. Our results illustrate the need for higher order calculations of the effective Hamiltonian in the similarity renormalization scheme.Comment: 31 pages, 4 figures, to be published in Physical Review

    Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies

    Get PDF
    Dynamical models for 17 Coma early-type galaxies are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters. In every galaxy models with a dark matter halo match the data better than models without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly. Model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA

    Mechanisms for Spin-Supersolidity in S=1/2 Spin-Dimer Antiferromagnets

    Full text link
    Using perturbative expansions and the contractor renormalization (CORE) algorithm, we obtain effective hard-core bosonic Hamiltonians describing the low-energy physics of S=1/2S=1/2 spin-dimer antiferromagnets known to display supersolid phases under an applied magnetic field. The resulting effective models are investigated by means of mean-field analysis and quantum Monte Carlo simulations. A "leapfrog mechanism", through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings, is unveiled that accounts for the supersolid behavior.Comment: 12 pages, 10 figure

    Dynamics of weakly localized waves

    Full text link
    We develop a transport theory to describe the dynamics of (weakly) localized waves in a quasi-1D tube geometry both in reflection and in transmission. We compare our results to recent experiments with microwaves, and to other theories such as random matrix theory and supersymmetric theory.Comment: RevTeX, 4 pages, 2 figure

    Block Diagonalization using SRG Flow Equations

    Get PDF
    By choosing appropriate generators for the Similarity Renormalization Group (SRG) flow equations, different patterns of decoupling in a Hamiltonian can be achieved. Sharp and smooth block-diagonal forms of phase-shift equivalent nucleon-nucleon potentials in momentum space are generated as examples and compared to analogous low-momentum interactions ("v_lowk").Comment: 4 pages, 9 figures (pdfLaTeX

    Integral Transforms for Conformal Field Theories with a Boundary

    Full text link
    A new method is developed for solving the conformally invariant integrals that arise in conformal field theories with a boundary. The presence of a boundary makes previous techniques for theories without a boundary less suitable. The method makes essential use of an invertible integral transform, related to the radon transform, involving integration over planes parallel to the boundary. For successful application of this method several nontrivial hypergeometric function relations are also derived.Comment: 20 pagess, LateX fil
    corecore