525 research outputs found
Estimates for practical quantum cryptography
In this article I present a protocol for quantum cryptography which is secure
against attacks on individual signals. It is based on the Bennett-Brassard
protocol of 1984 (BB84). The security proof is complete as far as the use of
single photons as signal states is concerned. Emphasis is given to the
practicability of the resulting protocol. For each run of the quantum key
distribution the security statement gives the probability of a successful key
generation and the probability for an eavesdropper's knowledge, measured as
change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio
Security of the Bennett 1992 quantum-key distribution against individual attack over a realistic channel
The security of two-state quantum key distribution against individual attack
is estimated when the channel has losses and noises. We assume that Alice and
Bob use two nonorthogonal single-photon polarization states. To make our
analysis simple, we propose a modified B92 protocol in which Alice and Bob make
use of inconclusive results and Bob performs a kind of symmetrization of
received states. Using this protocol, Alice and Bob can estimate Eve's
information gain as a function of a few parameters which reflect the
imperfections of devices or Eve's disturbance. In some parameter regions, Eve's
maximum information gain shows counter-intuitive behavior, namely, it decreases
as the amount of disturbances increases. For a small noise rate Eve can extract
perfect information in the case where the angle between Alice's two states is
small or large, while she cannot extract perfect information for intermediate
angles. We also estimate the secret key gain which is the net growth of the
secret key per one pulse. We show the region where the modified B92 protocol
over a realistic channel is secure against individual attack.Comment: 16 pages, 15 figure
Attacks on quantum key distribution protocols that employ non-ITS authentication
We demonstrate how adversaries with unbounded computing resources can break
Quantum Key Distribution (QKD) protocols which employ a particular message
authentication code suggested previously. This authentication code, featuring
low key consumption, is not Information-Theoretically Secure (ITS) since for
each message the eavesdropper has intercepted she is able to send a different
message from a set of messages that she can calculate by finding collisions of
a cryptographic hash function. However, when this authentication code was
introduced it was shown to prevent straightforward Man-In-The-Middle (MITM)
attacks against QKD protocols.
In this paper, we prove that the set of messages that collide with any given
message under this authentication code contains with high probability a message
that has small Hamming distance to any other given message. Based on this fact
we present extended MITM attacks against different versions of BB84 QKD
protocols using the addressed authentication code; for three protocols we
describe every single action taken by the adversary. For all protocols the
adversary can obtain complete knowledge of the key, and for most protocols her
success probability in doing so approaches unity.
Since the attacks work against all authentication methods which allow to
calculate colliding messages, the underlying building blocks of the presented
attacks expose the potential pitfalls arising as a consequence of non-ITS
authentication in QKD-postprocessing. We propose countermeasures, increasing
the eavesdroppers demand for computational power, and also prove necessary and
sufficient conditions for upgrading the discussed authentication code to the
ITS level.Comment: 34 page
The Dutch resolution variant of the classical resolution of racemates by formation of diastereomeric salts:Family behaviour in nucleation inhibition
The resolution of racemates through their diastereomeric salts can be positively affected by the addition of small amounts of suitable nucleation inhibitors. This discovery is a logical extension of “Dutch Resolution”, in which equimolar amounts of resolving agents that are members of the same family (i.e., structurally related) are used. We conducted a systematic search for nucleation inhibitors of the resolving agent 1-phenylethylamine. A wide range of amines that bear possible family resemblances to 1-phenylethylamine was investigated. It was found that (R)-1-phenylbutylamine is a good inhibitor of (R)-1-phenylethylamine. Results of turbidity measurements showed that, for the model case of mandelic acid resolution, the chief effect of this inhibitor was to widen the metastable zone for the more soluble diastereomer. This observation is in accordance with previous experience. Further scouting for possible family members revealed a wide variation in the effectiveness of inhibitors, dependent on their structure. By far the most effective inhibitors are bifunctional 1-phenylethylamine and/or 1-phenylbutylamine analogues. The effect of racemic inhibitors was found to approach that of enantiomerically pure inhibitors of the same absolute configuration of the 1-phenylethylamine used for resolution. The most effective inhibitors were tested for the resolution of a structural variety of racemates, and were shown to be broadly applicable.
Relationships between CYP2D6 phenotype, breast cancer and hot flushes in women at high risk of breast cancer receiving prophylactic tamoxifen: results from the IBIS-I trial
Licensed under a Creative Commons Attribution Non-Commercial Share Alike Licens
Quantum Nonlocality without Entanglement
We exhibit an orthogonal set of product states of two three-state particles
that nevertheless cannot be reliably distinguished by a pair of separated
observers ignorant of which of the states has been presented to them, even if
the observers are allowed any sequence of local operations and classical
communication between the separate observers. It is proved that there is a
finite gap between the mutual information obtainable by a joint measurement on
these states and a measurement in which only local actions are permitted. This
result implies the existence of separable superoperators that cannot be
implemented locally. A set of states are found involving three two-state
particles which also appear to be nonmeasurable locally. These and other
multipartite states are classified according to the entropy and entanglement
costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A.
Version 2: 30 pages, many small revisions and extensions, author added.
Version 3: Proof in Appendix D corrected, many small changes; final version
for Phys. Rev. A Version 4: Report of Popescu conjecture modifie
Conducting research in individual patients: lessons learnt from two series of N-of-1 trials
BACKGROUND: Double-blind randomised N-of-1 trials (N-of-1 trials) may help with decisions concerning treatment when there is doubt regarding the effectiveness and suitability of medication for individual patients. The patient is his or her own control, and receives the experimental and the control treatment during several periods of time in random order. Reports of N-of-1 trials are still relatively scarce, and the research methodology is not as firmly established as that of RCTs. Recently, we have conducted two series of N-of-1 trials in general practice. Before, during, and after data-collection, difficulties regarding outcome assessment, analysis of the results, the withdrawal of patients, and the follow-up had to be dealt with. These difficulties are described and our solutions are discussed. DISCUSSION: To prevent or anticipate difficulties in N-of-1 trials, we argue that that it is important to individualise the outcome measures, and to carefully consider the objective, type of randomisation and the analysis. It is recommended to use the same dosages and dosage forms that the patient used before the trial, to start the trial with a run-in period, to formulate both general and individualised decision rules regarding the efficacy of treatment, to adjust treatment policies immediately after the trial, and to provide adequate instructions and support if treatment is adjusted. SUMMARY: Because of the specific characteristics of N-of-1 trials it is difficult to formulate general 'how to do it' guidelines for designing N-of-1 trials. However, when the design of each N-of-1 trial is tailored to the specific characteristics of each individual patient and the underlying medical problem, most difficulties in N-of-1 trials can be prevented or overcome. In this way, N-of-1 trials may be of help when deciding on drug treatment for individual patients
IPCP: Immersive Parallel Coordinates Plots for Engineering Design Processes
Computational engineering design methods and tools are common practice in modern industry. Such approaches are integral in enabling designers to efficiently explore larger and more complex design spaces. However, at the same time, computational engineering design methods tend to dramatically increase the number of candidate solutions that decision-makers must interpret in order to make appropriate choices within a set of solutions. Since all candidate solutions can be represented in digital form together with their assessment criteria, evaluated according to some sort of simulation model, a natural way to explore and understand the complexities of the design problem is to visualize their multidimensional nature. The task now involves the discovery of patterns and trends within the multidimensional design space. In this work, we aim to enhance the design decision-making process by embedding visual analytics into an immersive virtual reality environment. To this end, we present a system called IPCP: immersive parallel coordinates plots. IPCP combines the well-established parallel coordinates visualization technique for high-dimensional data with immersive virtual reality. We propose this approach in order to exploit and discover efficient means to use new technology within a conventional decision-making process. The aim is to provide benefits by enhancing visualizations of 3D geometry and other physical quantities with scientific information. We present the design of this system, which allows the representation and exploration of multidimensional scientific datasets. A qualitative evaluation with two surrogate expert users, knowledgeable in multidimensional data analysis, demonstrate that the system can be used successfully to detect both known and previously unknown patterns in a real-world test dataset, producing an early indicative validation of its suitability for decision support in engineering design processes.Cambridge European and Trinity Hall; Engineering and Physical Sciences Research Council (EPSRC-1788814
Tailoring Adjuvant Endocrine Therapy for Postmenopausal Breast Cancer: A CYP2D6 Multiple-Genotype-Based Modeling Analysis and Validation
Purpose: Previous studies have suggested that postmenopausal women with breast cancer who present with wild-type CYP2D6 may actually have similar or superior recurrence-free survival outcomes when given tamoxifen in place of aromatase inhibitors (AIs). The present study established a CYP2D6 multiple-genotype-based model to determine the optimal endocrine therapy for patients harboring wild-type CYP2D6. Methods: We created a Markov model to determine whether tamoxifen or AIs maximized 5-year disease-free survival (DFS) for extensive metabolizer (EM) patients using annual hazard ratio (HR) data from the BIG 1-98 trial. We then replicated the model by evaluating 9-year event-free survival (EFS) using HR data from the ATAC trial. In addition, we employed two-way sensitivity analyses to explore the impact of HR of decreased-metabolizer (DM) and its frequency on survival by studying a range of estimates. Results: The 5-year DFS of tamoxifen-treated EM patients was 83.3%, which is similar to that of genotypically unselected patients who received an AI (83.7%). In the validation study, we further demonstrated that the 9-year EFS of tamoxifentreated EM patients was 81.4%, which is higher than that of genotypically unselected patients receiving tamoxifen (78.4%) and similar to that of patients receiving an AI (83.2%). Two-way sensitivity analyses demonstrated the robustness of the results
- …