41 research outputs found

    Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Würzburg Hybridoma Library

    Get PDF
    Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the Würzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the Würzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed

    Plant D-2-Hydroxyglutarate Dehydrogenase Participates in the Catabolism of Lysine Especially during Senescence

    Get PDF
    D-2-Hydroxyglutarate dehydrogenase (D-2HGDH) catalyzes the specific and efficient oxidation of D-2-hydroxyglutarate (D-2HG) to 2-oxoglutarate using FAD as a cofactor. In this work, we demonstrate that D-2HGDH localizes to plant mitochondria and that its expression increases gradually during developmental and dark-induced senescence in Arabidopsis thaliana, indicating an enhanced demand of respiration of alternative substrates through this enzymatic system under these conditions. Using loss-of-function mutants in D-2HGDH(d2hgdh1) and stable isotope dilution LC-MS/MS, we found that the D-isomer of 2HG accumulated in leaves of d2hgdh1 during both forms of carbon starvation. In addition to this, d2hgdh1 presented enhanced levels of most TCA cycle intermediates and free amino acids. In contrast to the deleterious effects caused by a deficiency in D-2HGDH in humans, d2hgdh1 and overexpressing lines of D-2HGDH showed normal developmental and senescence phenotypes, indicating a mild role of D-2HGDH in the tested conditions. Moreover, metabolic fingerprinting of leaves of plants grown in media supplemented with putative precursors indicated that D-2HG most probably originates during the catabolism of lysine. Finally, the L-isomer of 2HG was also detected in leaf extracts, indicating that both chiral forms of 2HG participate in plant metabolism

    Loss of the KN Motif and AnKyrin Repeat Domain 1 (KANK1) Leads to Lymphoid Compartment Dysregulation in Murine Model

    No full text
    The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells’ cytoskeleton formation and mobility
    corecore