42 research outputs found

    Characteristics of “Tip-DCs and MDSCs” and Their Potential Role in Leishmaniasis

    Get PDF
    Since the first description of dendritic cells (DCs) by Steinman and Cohn (1973), the myeloid lineage of leukocytes was investigated intensively. Nowadays it is obvious that myeloid cells, especially DCs, are crucial for the adaptive and innate immune response against intracellular pathogens such as Leishmania major parasites. Based on the overlapping expression of molecules that were commonly used to classify myeloid cells, it becomes difficult to denominate those cell types precisely. Of note, most of these markers used for myeloid cell identification are expressed on a broad range of myeloid cells, and should therefore be handled with care if used for subtyping of myeloid cells. In this mini-review we aim to discuss the relative impact of DCs that release TNF and nitric oxide (Tip-DCs) and myeloid cells with suppressive capacities (myeloid-derived suppressor cells, MDSCs) in infectious diseases such as experimental leishmaniasis. In our point of view it cannot be excluded that the novel subsets that were denominated as “Tip-DCs” and “MDSCs” might not be classical “subsets” but rather represent myeloid cells in a transient maturation stage expressing different genes, in response to the surrounding environment

    LTβR expression on hematopoietic cells regulates acute inflammation and influences maturation of myeloid subpopulations

    Get PDF
    Lymphotoxin beta-receptor (LTβR) is involved in the formation and maintenance of secondary lymphoid structures, as well as in the regulation of inflammatory responses. Because LTβR lymphoid structure formation continues to develop in infants, we compared two different chimera models: one using adult mice and the other using a transplantation model of neonatal mice. To elucidate the function of LTβR on lymphoid and non-lymphoid cells, we generated bone marrow chimeras on the wild type C57Bl/6 and the LTβR-deficient (LTβR−/−) background, and reconstituted the mice with bone marrow cells reciprocally. These chimeric mice were analyzed in the experimental model of acute dextran sulfate sodium-induced colitis. Interestingly, both models revealed not only equal reconstitution levels but also similar immunological responses: LTβR expression on stromal cells is essential for lymph node formation, whereas LTBR on hematopoietic cells is crucial for a decrease in inflammation. In addition, mice lacking LTβR on hematopoietic cells revealed (a) an increase of immature granulocytic cells in the spleen and (b) a reduced proportion of myeloid cells in peripheral blood and spleen expressing CD11b+Ly6C+Ly6G− (myeloid-derived suppressor cells expression profile). In conclusion, LTβR expression on hematopoietic cells seems to be involved in the down-regulation of acute inflammatory reactions paralleled by the appearance of immature myeloid cells

    IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM)

    Get PDF
    Cancer immunotherapy has been shown to enhance established treatment regimens. We evaluated the potential reinforcing effect of IL-15 in trastuzumab treated humanized tumor mice (HTM) which were generated by concurrent transplantation of neonatal NOD-scid IL2R.null mice with human hematopoietic stem cells (HSC) and HER2 positive breast cancer cells (metastasizing SK-BR-3, solid tumor forming BT474). We found that trastuzumab treatment efficacy mainly depends on the immediate anti-tumorigenic cellular effect which is significantly enhanced by tumor interacting immune cells upon cotransplantion of HSC. However, trastuzumab treatment caused elevated CD44 expression on tumor cells that metastasized into the lung and liver but did not hinder tumor cell dissemination into the bone marrow. Moreover, in a number of SK-BR-3-transplanted animals disseminated CD44(high)/CD24(low) tumor cells lost trastuzumab sensitivity. Concerning the FcYRIIIa polymorphism, trastuzumab treatment efficiency in HTM was higher in mice with NK-cells harboring the high affinity FcYRIIIa compared to those with low affinity Fc.RIIIa. In contrast, IL-15 caused the strongest NK-cell activation in heterozygous low affinity Fc.RIIIa animals. Although IL-15 enhanced the trastuzumab mediated tumor defense, an unspecific immune stimulation resulted in preterm animal death due to systemic inflammation. Overall, treatment studies based on "patient-like" HTM revealed critical and adverse immune-related mechanisms which must be managed prior to clinical testing

    Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion

    Get PDF
    Checkpoint blockade is particularly based on PD-1/PD-L1-inhibiting antibodies. However, an efficient immunological tumor defense can be blocked not only by PD-(L)1 but also by the presence of additional immune checkpoint molecules. Here, we investigated the co-expression of several immune checkpoint proteins and the soluble forms thereof (e.g., PD-1, TIM-3, LAG-3, PD-L1, PD-L2 and others) in humanized tumor mice (HTM) simultaneously harboring cell line-derived (JIMT-1, MDA-MB-231, MCF-7) or patient-derived breast cancer and a functional human immune system. We identified tumor-infiltrating T cells with a triple-positive PD-1, LAG-3 and TIM-3 phenotype. While PD-1 expression was increased in both the CD4 and CD8 T cells, TIM-3 was found to be upregulated particularly in the cytotoxic T cells in the MDA-MB-231-based HTM model. High levels of soluble TIM-3 and galectin-9 (a TIM-3 ligand) were detected in the serum. Surprisingly, soluble PD-L2, but only low levels of sPD-L1, were found in mice harboring PD-L1-positive tumors. Analysis of a dataset containing 3039 primary breast cancer samples on the R2 Genomics Analysis Platform revealed increased TIM-3, galectin-9 and LAG-3 expression, not only in triple-negative breast cancer but also in the HER2+ and hormone receptor-positive breast cancer subtypes. These data indicate that LAG-3 and TIM-3 represent additional key molecules within the breast cancer anti-immunity landscape

    Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1

    Get PDF
    Intrarectal infection between men who have sex with men represents a predominant form of human immunodeficiency virus (HIV) transmission in developed countries. Currently there are no adequate small animal models that recapitulate intrarectal HIV transmission. Here we demonstrate that human lymphocytes generated in situ from hematopoietic stem cells reconstitute the gastrointestinal tract of humanized mice with human CD4+ T cells rendering them susceptible to intrarectal HIV transmission. HIV infection after a single intrarectal inoculation results in systemic infection with depletion of CD4+ T cells in gut-associated lymphoid tissue and other pathologic sequela that closely mimics those observed in HIV infected humans. This novel model provides the basis for the development and evaluation of novel approaches aimed at immune reconstitution of human gut-associated lymphoid tissue and for the development, testing, and implementation of microbicides to prevent intrarectal HIV-1 transmission

    Differential Expression of PD-L1 during Cell Cycle Progression of Head and Neck Squamous Cell Carcinoma

    Get PDF
    The expression of PD-L1 by tumor cells is mainly associated with its immunosuppressive effect. In fact, PD-1/PD-L1 immune checkpoint inhibitors demonstrated remarkable effects in advanced cancer patients including HNSCC. In this context, irradiation is currently being investigated as a synergistic treatment modality to immunotherapy. However, the majority of HNSCC patients still show little improvement or even hyperprogression. Interestingly, there is increasing evidence for additional cell-intrinsic functions of PD-L1 in tumor cells. In previous studies, we showed that PD-L1 has a strong influence on proliferation, migration, invasion, and survival after irradiation. We demonstrated that cellular expression and localization of PD-L1 differed depending on sensitivity to irradiation. Here, we show that PD-L1 is also differentially expressed during cell cycle progression of HNSCC. Furthermore, cellular localization of PD-L1 also changes depending on a particular cell cycle phase. Moreover, distinct observations occurred depending on the general differentiation status. Overall, the function of PD-L1 cannot be generalized. Rather, it depends on the differentiation status and microenvironment. PD-L1 expression and localization are variable, depending on different factors. These findings may provide insight into why differential response to PD-1/PD-L1 antibody therapy can occur. Detailed understanding of cell-intrinsic PD-L1 functions will further allow antibody-based immunotherapy to be optimized

    TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity

    Get PDF
    Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs

    NASH limits anti-tumour surveillance in immunotherapy-treated HCC.

    Get PDF
    Hepatocellular carcinoma (HCC) can have viral or non-viral causes1-5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment

    Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis

    No full text
    Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56(bright) NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded beta-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system
    corecore