71 research outputs found

    Entwicklung chromatographischer und spektroskopischer Profilingmethoden zur Analyse komplexer Strukturelemente neutraler Pektinseitenketten

    Get PDF
    Die neutralen Seitenketten von Pektinen können die Eigenschaften von Lebensmitteln in vielfältiger Weise beeinflussen. Bisher verwendete Analysemethoden liefern jedoch lediglich begrenzte Informationen über die komplexen Strukturen dieser Polysaccharide. Im Rahmen dieser Arbeit wurden zum einen neue Strukturelemente der neutralen Pektinseitenketten charakterisiert und zum anderen chromatographische und spektroskopische Profilingmethoden zur schnellen und detaillierten Strukturanalyse entwickelt

    Products released from structurally different dextrans by bacterial and fungal dextranases

    Get PDF
    Dextran hydrolysis by dextranases is applied in the sugar industry and the medical sector, but it also has a high potential for use in structural analysis of dextrans. However, dextranases are produced by several organisms and thus differ in their properties. The aim of this study was to comparatively investigate the product patterns obtained from the incubation of linear as well as O3- and O4-branched dextrans with different dextranases. For this purpose, genes encoding for dextranases from Bacteroides thetaiotaomicron and Streptococcus salivarius were cloned and heterologously expressed in Escherichia coli. The two recombinant enzymes as well as two commercial dextranases from Chaetomium sp. and Penicillium sp. were subsequently used to hydrolyze structurally different dextrans. The hydrolysis products were investigated in detail by HPAEC-PAD. For dextranases from Chaetomium sp., Penicillium sp., and Bacteroides thetaiotaomicron, isomaltose was the end product of the hydrolysis from linear dextrans, whereas Penicillium sp. dextranase led to isomaltose and isomaltotetraose. In addition, the latter enzyme also catalyzed a disproportionation reaction when incubated with isomaltotriose. For O3- and O4-branched dextrans, the fungal dextranases yielded significantly different oligosaccharide patterns than the bacterial enzymes. Overall, the product patterns can be adjusted by choosing the correct enzyme as well as a defined enzyme activity

    Size-Dependent Variability in Flow and Viscoelastic Behavior of Levan Produced by Gluconobacter albidus TMW 2.1191

    Get PDF
    Levan is a fructan-type exopolysaccharide which is produced by many microbes from sucrose via extracellular levansucrases. The hydrocolloid properties of levan depend on its molecular weight, while it is unknown why and to what extent levan is functionally diverse depending on ist size. The aim of our study was to gain deeper insight into the size-dependent functional variability of levan. For this purpose, levans of different sizes were produced using the water kefir isolate Gluconobacter albidus TMW 2.1191 and subsequently rheologically characterized. Three levan types could be identified, which are similarly branched, but differ significantly in their molecular size and rheological properties. The smallest levan (108^{8} Da) produced at pH ≥ 4.5 were shear-thinning, and the levan produced at pH 5.0 showed a gel-like behavior at 5% (w/v). A third (intermediate) levan variant was obtained through production in buffers at pH 4.0 and exhibited the properties of a viscoelastic fluid up to concentrations of 15% (w/v). Our study reveals that the rheological properties of levan are determined by its size and polydispersity, rather than by the amount of levan used or the structural composition

    Neurogenesis from Sox2 expressing cells in the adult cerebellar cortex

    Get PDF
    We identified a rare undifferentiated cell population that is intermingled with the Bergmann glia of the adult murine cerebellar cortex, expresses the stem cell markers Sox2 and Nestin, and lacks markers of glial or neuronal differentiation. Interestingly, such Sox2(+) S100(-) cells of the adult cerebellum expanded after adequate physiological stimuli in mice (exercise), and Sox2(+) precursors acquired positivity for the neuronal marker NeuN over time and integrated into cellular networks. In human patients, SOX2(+) S100(-) cells similarly increased in number after relevant pathological insults (infarcts), suggesting a similar expansion of cells that lack terminal glial differentiation

    The influence of bright and dim light on substrate metabolism, energy expenditure and thermoregulation in insulin-resistant individuals depends on time of day

    Get PDF
    AIMS/HYPOTHESIS: In our modern society, artificial light is available around the clock and most people expose themselves to electrical light and light-emissive screens during the dark period of the natural light/dark cycle. Such suboptimal lighting conditions have been associated with adverse metabolic effects, and redesigning indoor lighting conditions to mimic the natural light/dark cycle more closely holds promise to improve metabolic health. Our objective was to compare metabolic responses to lighting conditions that resemble the natural light/dark cycle in contrast to suboptimal lighting in individuals at risk of developing metabolic diseases. METHODS: Therefore, we here performed a non-blinded, randomised, controlled, crossover trial in which overweight insulin-resistant volunteers (n = 14) were exposed to two 40 h laboratory sessions with different 24 h lighting protocols while staying in a metabolic chamber under real-life conditions. In the Bright day–Dim evening condition, volunteers were exposed to electric bright light (~1250 lx) during the daytime (08:00–18:00 h) and to dim light (~5 lx) during the evening (18:00–23:00 h). Vice versa, in the Dim day–Bright evening condition, volunteers were exposed to dim light during the daytime and bright light during the evening. Randomisation and allocation to light conditions were carried out by sequential numbering. During both lighting protocols, we performed 24 h indirect calorimetry, and continuous core body and skin temperature measurements, and took frequent blood samples. The primary outcome was plasma glucose focusing on the pre- and postprandial periods of the intervention. RESULTS: Spending the day in bright light resulted in a greater increase in postprandial triacylglycerol levels following breakfast, but lower glucose levels preceding the dinner meal at 18:00 h, compared with dim light (5.0 ± 0.2 vs 5.2 ± 0.2 mmol/l, n = 13, p=0.02). Dim day–Bright evening reduced the increase in postprandial glucose after dinner compared with Bright day–Dim evening (incremental AUC: 307 ± 55 vs 394 ± 66 mmol/l × min, n = 13, p=0.009). After the Bright day–Dim evening condition the sleeping metabolic rate was identical compared with the baseline night, whereas it dropped after Dim day–Bright evening. Melatonin secretion in the evening was strongly suppressed for Dim day–Bright evening but not for Bright day–Dim evening. Distal skin temperature for Bright day–Dim evening was lower at 18:00 h (28.8 ± 0.3°C vs 29.9 ± 0.4°C, n = 13, p=0.039) and higher at 23:00 h compared with Dim day–Bright evening (30.1 ± 0.3°C vs 28.8 ± 0.3°C, n = 13, p=0.006). Fasting and postprandial plasma insulin levels and the respiratory exchange ratio were not different between the two lighting protocols at any time. CONCLUSIONS/INTERPRETATION: Together, these findings suggest that the indoor light environment modulates postprandial substrate handling, energy expenditure and thermoregulation of insulin-resistant volunteers in a time-of-day-dependent manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT03829982. FUNDING: We acknowledge the financial support from the Netherlands Cardiovascular Research Initiative: an initiative with support from the Dutch Heart Foundation (CVON2014–02 ENERGISE). GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-021-05643-9

    Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production

    Get PDF
    The Rowett Institute and Biomathematics & Statistics Scotland receive financial support from the Scottish Government Rural and Environmental Sciences and Analytical Services. Nicole Reichardt was funded by a Scottish Government Strategic Partnership on Food and Drink Science. We would like to thank Donna Henderson for carrying out GC analysis and Alan Walker for help and advice with bioinformatic sequence analysis. Supplementary information is available at ISME Journal’s website.Peer reviewedPostprin
    corecore