12 research outputs found

    Community-based sampling methods for surveillance of the Chagas disease vector, Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae).

    No full text
    In Guatemala, the most widespread vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae), the causative agent of Chagas disease, is Triatoma dimidiata (Latreille) (Hemiptera: Reduviidae: Triatominae). T. dimidiata is native to Guatemala and is present in both domestic and sylvatic habitats. Consequently, control of T. dimidiata is difficult because after successful elimination from homes, individual insects can recolonize homes from the surrounding environment. Therefore, intensive long-term surveillance of this species is essential to ensure adequate control is achieved. Manual inspection for signs of infestation, the current method used to monitor Triatominae throughout Central and South America, is labor and time-consuming, so cost-effective alternatives are needed. The current study compared the effectiveness of the current method of surveillance of T. dimidiata with community-based techniques of G6mez-Nuñez sensor boxes, collection and observation of bugs by householders, and presence of triatomine-like feces on walls. Although manual inspection was the most sensitive method when used alone, collection by householders also was sensitive and specific and involved less effort. Sensor boxes were not sensitive indicators of T. dimidiata infestation when used alone. Two recorded variables, visual inspection for feces and the sighting of bugs by householders, were sensitive and specific indicators of infestation, and in combination with collection by householders and sensor boxes these methods were significantly more likely to detect infestations than manual inspection alone. A surveillance program that combines multiple community-based techniques should have low cost and involve minimal effort from the government and at the same time promote sustainable community involvement in disease prevention

    Electrophysiologically and behaviourally active semiochemicals identified from bed bug refuge substrate.

    Get PDF
    Bed bugs are pests of public health importance due to their relentless biting habits that can lead to allergies, secondary infections and mental health issues. When not feeding on human blood bed bugs aggregate in refuges close to human hosts. This aggregation behaviour could be exploited to lure bed bugs into traps for surveillance, treatment efficacy monitoring and mass trapping efforts, if the responsible cues are identified. The aim of this study was to identify and quantify the bed bug aggregation pheromone. Volatile chemicals were collected from bed bug-exposed papers, which are known to induce aggregation behaviour, by air entrainment. This extract was tested for behavioural and electrophysiological activity using a still-air olfactometer and electroantennography, respectively. Coupled gas chromatography-electroantennography (GC-EAG) was used to screen the extract and the GC-EAG-active chemicals, benzaldehyde, hexanal, (E)-2-octenal, octanal, nonanal, decanal, heptanal, (R,S)-1-octen-3-ol, 3-carene, β-phellandrene, (3E,5E)-octadien-2-one, (E)-2-nonenal, 2-decanone, dodecane, nonanoic acid, 2-(2-butoxyethoxy)ethyl acetate, (E)-2-undecanal and (S)-germacrene D, were identified by GC-mass spectrometry and quantified by GC. Synthetic blends, comprising 6, 16, and 18 compounds, at natural ratios, were then tested in the still-air olfactometer to determine behavioural activity. These aggregation chemicals can be manufactured into a lure that could be used to improve bed bug management

    The effects of approach-avoidance modification on social anxiety disorder: A pilot study

    No full text
    Item does not contain fulltextCognitive bias modification has recently been discussed as a possible intervention for mental disorders. A specific form of this novel treatment approach is approach-avoidance modification. In order to examine the efficacy of approach-avoidance modification for positive stimuli associated with social anxiety, we recruited 43 individuals with social anxiety disorder and randomly assigned them to a training (implicit training to approach smiling faces) or a control (equal approach and avoidance of smiling faces) condition in three sessions over the course of a 1-week period. Dependent measures included clinician ratings, self-report measures of social anxiety, and overt behavior during behavioral approach tasks. No group differences in any of the outcome measures were observed after training. In addition, while individuals in the training group showed increased approach tendency in one of the sessions, this effect was inconsistent across the three sessions and did not result in long-term changes in implicit approach tendencies between the groups over the course of the entire study. These results suggest that approach-avoidance modification might result in short-lasting effects on implicit approach tendencies towards feared positive stimuli, but this modification may not result in meaningful behavioral change or symptom reduction in individuals with social anxiety disorder.13 p

    The resilience of Triatoma dimidiata: An analysis of reinfestation in the Nicaraguan Chagas disease vector control program (2010?2016)

    Get PDF
    Background: The control of Triatoma dimidiata, a major vector of Chagas disease, was believed to eliminate Trypanosoma cruzi transmission in Central America. This vector was known for its ability to repeatedly reinfest human dwellings even after initial insecticide spraying. Current vector control programs assume that community-based surveillance can maintain low levels of infestation over many years, despite a lack of evidence in the literature to corroborate this assumption. This study aims to evaluate long-term reinfestation risk in the Nicaraguan vector control program from 2010 to 2016. Methods: We collected data from a cohort of 395 houses in Pueblo Nuevo, Nicaragua. Primary data were collected through a field survey to assess post-intervention levels of T. dimidiata house infestation in 2016, two years after the large-scale insecticide spraying. We obtained secondary data from the records about past infestation levels and control activities between 2010 and 2015. Multilevel mixed-effects logistic regression analyses were used to identify factors associated with post-intervention house infestation. Results: The control program effectively reduced the infestation level from 2010 to 2014. Community-based surveillance was introduced in 2013; however, post-intervention infestation in 2016 had nearly reached pre-intervention levels in rural villages. Post-intervention house infestation was positively associated with poor wall construction, roofing tiles piled in the peri-domestic areas or the presence of dogs. Interestingly, the odds of post-intervention house infestation were one-fifth less when villagers sprayed their own houses regularly. Past infestation levels and the intensity of government-led insecticide spraying did not explain post-intervention house infestation. Conclusions: The vector control program failed to offer sustained reductions in T. dimidiata house infestation. This experience would suggest that community-based surveillance is an insufficient approach to suppressing T. dimidiata house infestation over many years. This study provides evidence to suggest that control policies for T. dimidiata should be reconsidered throughout Central America
    corecore