462 research outputs found

    The partial correlation function in the identification of non-linear systems and an eye position transducer

    Get PDF
    Section 1. A correlation technique is developed which enables the identification of systems belonging to a restricted class of non- linear systems. The method is applicable to a system which may be represented as a single-valued, instantaneous, time-invariant non-linearity followed by linear dynamics. The characteristic of the non-linearity and the impulse response of the linear element are found simultaneously in a single experiment. A class of pseudo-random test signals is studied, and results are derived for some situations in which the results are contaminated by noise. Further work is required to extend the applicability of the ·technique, to compare its performance with other methods of identification, and to investigate alternative test signals. Section 2. A simple eye-position transducer is described, which measures eyeball rotation about two axes.· Depending upon the characteristics of the subject's eye, and the operating conditions, an accuracy of as good as + 5% may be obtained over a range of 12º. The user wears a light-weight infra-red optical-electronic device on a spectacle frame. The transducer exploits the variation in infra-red reflectivity over the surface of the eyeball, and therefore varies in its performance from one subject to another. It may be used by some subjects in all lighting conditions except direct sunlight. Further work is needed to eliminatethe deficiencies of the device, but an investigation into television techniques, which are now feasible, should be made first. Section 3. The experimental determination of the region of asymptotic stability of a second order time invariant system may be considerably simplified by taking advantage of the nature of the trajectories wwhich form the boundary of the region. These trajectories are found easily by reverse time simulation. Further work is possible to investigate the extension of the method to higher order systems, but useful results seem unlikely

    Events in Early Life are Associated with Female Reproductive Ageing: A UK Biobank Study.

    Get PDF
    The available oocyte pool is determined before birth, with the majority of oocytes lost before puberty. We hypothesised that events occurring before birth, in childhood or in adolescence ('early-life risk factors') could influence the size of the oocyte pool and thus the timing of menopause. We included cross-sectional data from 273,474 women from the UK Biobank, recruited in 2006-2010 from across the UK. We analysed the association of early menopause with events occurring before adulthood in 11,781 cases (menopause aged under 45) and 173,641 controls (menopause/pre-menopausal at ≥ 45 years), in models controlling for potential confounding variables. Being part of a multiple birth was strongly associated with early menopause (odds ratio = 1.42, confidence interval: 1.11, 1.82, P = 8.0 × 10(-9), fully-adjusted model). Earlier age at menarche (odds ratio = 1.03, confidence interval: 1.01, 1.06, P = 2.5 × 10(-6)) and earlier year of birth were also associated with EM (odds ratio = 1.02, confidence interval: 1.00, 1.04, P = 8.0 × 10(-6)). We also confirmed previously reported associations with smoking, drinking alcohol, educational level and number of births. We identified an association between multiple births and early menopause, which connects events pre-birth, when the oocyte pool is formed, with reproductive ageing in later life.This research has been conducted using the UK Biobank Resource. This work was generously supported by a Wellcome Trust Institutional Strategic Support Award [WT097835MF to University of Exeter].This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2471

    Pathway Analysis of GWAS Provides New Insights into Genetic Susceptibility to 3 Inflammatory Diseases

    Get PDF
    Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a complementary approach to the more common single SNP association approach in understanding genetic determinants of common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common diseases. We tested inflammatory pathways for association with Crohn's disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC). The generalisability of these predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory pathways showed highly significant associations (p 10−3–10−20) with CD, T1D and RA. Variable selection identified on average a set of 205 SNPs (149 genes) for T1D, 350 SNPs (189 genes) for RA and 493 SNPs (277 genes) for CD. The pattern of polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC) and RA (85% AUC), and weakly predictive of CD (60% AUC). The predictive ability of the T1D model (without any parameter refitting) had good predictive ability (79% AUC) in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases operates through multiple genes interacting in functional pathways

    Development and validation of multivariable clinical diagnostic models to identify type 1 diabetes requiring rapid insulin therapy in adults aged 18-50 years

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordObjective: To develop and validate multivariable clinical diagnostic models to assist distinguishing between type 1 and type 2 diabetes in adults aged 18 to 50. Design: Multivariable logistic regression analysis was used to develop classification models integrating five pre-specified predictor variables, including clinical features (age of diagnosis, BMI) and clinical biomarkers (GADA and Islet Antigen 2 islet autoantibodies, Type 1 Diabetes Genetic Risk Score), to identify type 1 diabetes with rapid insulin requirement using data from existing cohorts. Setting: United Kingdom cohorts recruited from primary and secondary care. Participants: 1,352 (model development) and 582 (external validation) participants diagnosed with diabetes between the age of 18 and 50 years of white European origin. Main outcome measures: Type 1 diabetes was defined by rapid insulin requirement (within 3 years of diagnosis) and severe endogenous insulin deficiency (C-peptide <200pmol/L). Type 2 diabetes was defined by either a lack of rapid insulin requirement or, where insulin treated within 3 years, retained endogenous insulin secretion (C-peptide >600pmol/L at ≥5 years diabetes duration). Model performance was assessed using area under the receiver operating characteristic curve (ROC AUC), and internal and external validation. 4 Results: Type 1 diabetes was present in 13% of participants in the development cohort. All five predictor variables were discriminative and independent predictors of type 1 diabetes (p<0.001 for all) with individual ROC AUC ranging from 0.82 to 0.85. Model performance was high: ROC AUC range 0.90 [95%CI 0.88, 0.93] (clinical features only) to 0.97 [0.96, 0.98] (all predictors) with low prediction error. Results were consistent in external validation (clinical features and GADA ROC AUC 0.93 [0.90, 0.96]). Conclusions: Clinical diagnostic models integrating clinical features with biomarkers have high accuracy for identifying type 1 diabetes with rapid insulin requirement, and could assist clinicians and researchers in accurately identifying patients with type 1 diabetes.National Institute for Health Research (NIHR)European Community FP7Oxford Hospitals Charitable FundWellcome TrustMedical Research Council (MRC

    Investigation of Type 2 Diabetes Risk Alleles Support CDKN2A/B, CDKAL1, and TCF7L2 As Susceptibility Genes in a Han Chinese Cohort

    Get PDF
    Background: Recent genome-wide association studies (GWASs) have reported several genetic variants to be reproducibly associated with type 2 diabetes. Additional variants have also been detected from a metaanalysis of three GWASs, performed in populations of European ancestry. In the present study, we evaluated the influence of 17 genetic variants from 15 candidate loci, identified in type 2 diabetes GWASs and the metaanalysis, in a Han Chinese cohort. Methodology/Principal Findings: Selected type 2 diabetes-associated genetic variants were genotyped in 1,165 type 2 diabetic patients and 1,136 normoglycemic control individuals of Southern Han Chinese ancestry. The OR for risk of developing type 2 diabetes was calculated using a logistic regression model adjusted for age, sex, and BMI. Genotype-phenotype associations were tested using a multivariate linear regression model. Genetic variants in CDKN2A/B, CDKAL1, TCF7L2, TCF2, MC4R, and PPARG showed a nominal association with type 2 diabetes (P <= 0.05), of whom the three first would stand correction for multiple testing: CDKN2A/B rs10811661, OR: 1.26 (1.12-1.43) P = 1.8* 10(-4); CDKAL1 rs10946398, OR: 1.23 (1.09-1.39); P = 7.1* 10(-4), and TCF7L2 rs7903146, OR: 1.61 (1.19-2.18) P = 2.3* 10(-3). Only nominal phenotype associations were observed, notably for rs8050136 in FTO and fasting plasma glucose (P = 0.002), postprandial plasma glucose (P = 0.002), and fasting C-peptide levels (P = 0.006) in the diabetic patients, and with BMI in controls (P = 0.033). Conclusions/Significance: We have identified significant association between variants in CDKN2A/B, CDKAL1 and TCF7L2, and type 2 diabetes in a Han Chinese cohort, indicating these genes as strong candidates conferring susceptibility to type 2 diabetes across different ethnicities

    Adult height variants affect birth length and growth rate in children

    Get PDF
    Previous studies identified 180 single nucleotide polymorphisms (SNPs) associated with adult height, explaining ∼10% of the variance. The age at which these begin to affect growth is unclear. We modelled the effect of these SNPs on birth length and childhood growth. A total of 7768 participants in the Avon Longitudinal Study of Parents and Children had data available. Individual growth trajectories from 0 to 10 years were estimated using mixed-effects linear spline models and differences in trajectories by individual SNPs and allelic score were determined. The allelic score was associated with birth length (0.026 cm increase per ‘tall’ allele, SE = 0.003, P = 1 × 10−15, equivalent to 0.017 SD). There was little evidence of association between the allelic score and early infancy growth (0–3 months), but there was evidence of association between the allelic score and later growth. This association became stronger with each consecutive growth period, per ‘tall’ allele per month effects were 0.015 SD (3 months–1 year, SE = 0.004), 0.023 SD (1–3 years, SE = 0.003) and 0.028 SD (3–10 years, SE = 0.003). By age 10, the mean height difference between individuals with ≤170 versus ≥191 ‘tall’ alleles (the top and bottom 10%) was 4.7 cm (0.8 SD), explaining ∼5% of the variance. There was evidence of associations with specific growth periods for some SNPs (rs3791675, EFEMP1 and rs6569648, L3MBTL3) and supportive evidence for previously reported age-dependent effects of HHIP and SOCS2 SNPs. SNPs associated with adult height influence birth length and have an increasing effect on growth from late infancy through to late childhood. By age 10, they explain half the height variance (∼5%) of that explained in adults (∼10%)

    Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes

    Get PDF
    OnlineOpen Article. This is a copy of an article published in Diabetic Medicine. This journal is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1464-5491Genome-wide association studies have identified >30 common variants associated with Type 2 diabetes (>5% minor allele frequency). These variants have small effects on individual risk and do not account for a large proportion of the heritable component of the disease. Monogenic forms of diabetes are caused by mutations that occur in <1:2000 individuals and follow strict patterns of inheritance. In contrast, the role of low frequency genetic variants (minor allele frequency 0.1-5%) in Type 2 diabetes is not known. The aim of this study was to assess the role of low frequency PDX1 (also called IPF1) variants in Type 2 diabetes

    The functional "KL-VS" variant of KLOTHO is not associated with type 2 diabetes in 5028 UK Caucasians

    Get PDF
    BACKGROUND: Klotho has an important role in insulin signalling and the development of ageing-like phenotypes in mice. The common functional "KL-VS" variant in the KLOTHO (KL) gene is associated with longevity in humans but its role in type 2 diabetes is not known. We performed a large case-control and family-based study to test the hypothesis that KL-VS is associated with type 2 diabetes in a UK Caucasian population. METHODS: We genotyped 1793 cases, 1619 controls and 1616 subjects from 509 families for the single nucleotide polymorphism (SNP) F352V (rs9536314) that defines the KL-VS variant. Allele and genotype frequencies were compared between cases and controls. Family-based analysis was used to test for over- or under-transmission of V352 to affected offspring. RESULTS: Despite good power to detect odds ratios of 1.2, there were no significant associations between alleles or genotypes and type 2 diabetes (V352 allele: odds ratio = 0.96 (0.84–1.09)). Additional analysis of quantitative trait data in 1177 healthy control subjects showed no association of the variant with fasting insulin, glucose, triglycerides, HDL- or LDL-cholesterol (all P > 0.05). However, the HDL-cholesterol levels observed across the genotype groups showed a similar, but non-significant, pattern to previously reported data. CONCLUSION: This is the first large-scale study to examine the association between common functional variation in KL and type 2 diabetes risk. We have found no evidence that the functional KL-VS variant is a risk factor for type 2 diabetes in a large UK Caucasian case-control and family-based study

    A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) is associated with a reduced ability of women to quit smoking in pregnancy

    Get PDF
    Maternal smoking during pregnancy is associated with low birth weight and adverse pregnancy outcomes. Women are more likely to quit smoking during pregnancy than at any other time in their lives, but some pregnant women continue to smoke. A recent genome-wide association study demonstrated an association between a common polymorphism (rs1051730) in the nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) and both smoking quantity and nicotine dependence. We aimed to test whether the same polymorphism that predisposes to greater cigarette consumption would also reduce the likelihood of smoking cessation in pregnancy. We studied 7845 pregnant women of European descent from the South-West of England. Using 2474 women who smoked regularly immediately pre-pregnancy, we analysed the association between the rs1051730 risk allele and both smoking cessation during pregnancy and smoking quantity. Each additional copy of the risk allele was associated with a 1.27-fold higher odds (95% CI 1.11–1.45) of continued smoking during pregnancy (P = 0.0006). Adjustment for pre-pregnancy smoking quantity weakened, but did not remove this association [odds ratio (OR) 1.20 (95% CI 1.03–1.39); P = 0.018]. The same risk allele was also associated with heavier smoking before pregnancy and in the first, but not the last, trimester [OR for smoking 10+ cigarettes/day versus 1–9/day in first trimester = 1.30 (95% CI 1.13–1.50); P = 0.0003]. To conclude, we have found strong evidence of association between the rs1051730 variant and an increased likelihood of continued smoking in pregnancy and have confirmed the previously observed association with smoking quantity. Our data support the role of genetic factors in influencing smoking cessation during pregnancy

    Effects of the diabetes linked TCF7L2 polymorphism in a representative older population

    Get PDF
    BACKGROUND: A polymorphism in the transcription factor 7-like 2 (TCF7L2) gene has been found to be associated with type 2 diabetes in case-control studies. We aimed to estimate associations of the marker rs7903146 (C/T) polymorphism with fasting glucose, lipids, diabetes prevalence and complications in an older general population. METHODS: In total, 944 subjects aged ≥ 65 years from the population representative InCHIANTI study were enrolled in this study. Those with fasting blood glucose of ≥ 7 mmol/l or physician diagnosis were considered diabetic. Cut-off points for impaired fasting glucose (IFG) were ≥ 5.6 mmol/l to < 7 mmol/l. RESULTS: In the general population sample, minor (T) allele carriers of rs7903146 had higher fasting blood glucose (FBG) (p = 0.028) but lower fasting insulin (p = 0.030) and HOMA2b scores (p = 0.001), suggesting poorer beta-cell function. T allele carriers also had smaller waist circumference (p = 0.009), lower triglyceride levels (p = 0.006), and higher high-density lipoprotein cholesterol (p = 0.008). The prevalence of diabetes or IFG was 32.4% in TT carriers and 23.3% in CC carriers; adjusted OR = 1.67 (95% confidence interval 1.05 to 2.65, p = 0.031). Within the diabetic and IFG groups, fewer T allele carriers had metabolic syndrome features (p = 0.047) or had experienced a myocardial infarction (p = 0.037). Conversely, T allele carriers with diabetes had poorer renal function (reduced 24-hour creatinine clearance, p = 0.013), and possibly more retinopathy (p = 0.067). Physician-diagnosed dementia was more common in the T carriers (in diabetes p = 0.05, with IFG p = 0.024). CONCLUSION: The TCF7L2 rs7903146 polymorphism is associated with lower insulin levels, smaller waist circumference, and lower risk lipid profiles in the general elderly population. Patients with diabetes who are carriers of the minor allele are less likely to have metabolic-syndrome features, but may experience more microvascular complications, although the number of cases was small. If replicated, these findings may have implications for developing treatment approaches tailored by genotype
    corecore