10 research outputs found

    Molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze with a combine-amplification refractory mutation system

    Get PDF
    Background: The interaction of the non-deletional α +- thalassaemia mutations Haemoglobin Constant Spring and Haemoglobin Quong Sze with the Southeast Asian double α-globin gene deletion results in non-deletional Haemoglobin H disease. Accurate detection of non-deletional Haemoglobin H disease, which is associated with severe phenotypes, is necessary as these mutations have been confirmed in the Malaysian population. Methods: DNA from two families with Haemoglobin H disease was extracted from EDTA-anticoagulated whole blood and subjected to molecular analysis for α-thalassaemia. A duplex polymerase chain reaction was used to detect the Southeast Asian α-globin gene deletion. Polymerase chain reaction-restriction fragment length polymorphism analysis was then carried out to determine the presence of Haemoglobin Constant Spring and Haemoglobin Quong Sze. A combine- amplification refractory mutation system protocol was optimised and implemented for the rapid and specific molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze in a single polymerase chain reaction. Results and Conclusions: The combine- amplification refractory mutation system for Haemoglobin Constant Spring and Haemoglobin Quong Sze, together with the duplex polymerase chain reaction, provides accurate pre- and postnatal diagnosis of non-deletional Haemoglobin H disease and allows detailed genotype analyses using minimal quantities of DNA

    Thalassemia intermedia in HbH-CS disease with compound heterozygosity for β-thalassemia: challenges in hemoglobin analysis and clinical diagnosis

    Get PDF
    Co-inheritance of α-thalassemia with homozygosity or compound heterozygosity for β-thalassemia may ameliorate β-thalassemia major. A wide range of clinical phenotypes is produced depending on the number of α-thalassemia alleles (-α/αα --/αα, --/-α). The co-inheritance of β-thalassemia with α-thalassemia with a single gene deletion (-α/αα) is usually associated with thalassemia major. In contrast, the co-inheritance of β-thalassemia with two α-genes deleted in cis or trans (--/αα or -α/-α) generally produces β-thalassemia intermedia. In Southeast Asia, the most common defect responsible for α-thalassemia is the Southeast Asian (SEA) deletion of 20.5 kilobases. The presence of the SEA deletion with Hb Constant Spring (HbCS) produces HbH-CS disease. Co-inheritance of HbH-CS with compound heterozygosity for β-thalassemia is very rare. This study presents a Malay patient with HbH-CS disorder and β° /β +-thalassemia. The SEA deletion was confirmed in the patient using a duplex-PCR. A Combine-Amplification Refractory Mutation System (C-ARMS) technique to simultaneously detect HbCS and Hb Quong Sze confirmed HbCS in the patient. Compound heterozygosity for CD41/ 42 and Poly A was confirmed using the ARMS. This is a unique case as the SEA α-gene deletion in cis (-- SEA/αα) is generally not present in the Malays, who more commonly posses the two α-gene deletion in trans (-α/-α). In addition, the β-globin gene mutation at CD41/42 is a common mutation in the Chinese and not in the Malays. The presence of both the SEA deletion and CD41/42 in the mother of the patient suggests the possible introduction of these two defects into the family by marriage with a Chinese

    Interaction of Hb South Florida (codon 1; GTG→ATG) and HbE, with β-thalassemia (IVS1-1; G→A): expression of different clinical phenotypes

    Get PDF
    Introduction: Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-β-thalassemia generally manifests with severe anemia where individuals exhibit β-thalassemia major with regular blood transfusions or β-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three β-globin gene defects—HbE, Hb South Florida, and IVS1-1 (G→A). Materials and methods: HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare β-hemoglobin variant, and its interactions with other β-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to βo-thalassemia. Results and discussion: Fifteen mutations along the β-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA Conclusion: The affected child with HbE/IVS1-1 produced a β-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a β-thalassemia carrier phenotype in the mother

    High Prevalence of Alpha- and Beta-Thalassemia in the Kadazandusuns in East Malaysia: Challenges in Providing Effective Health Care for an Indigenous Group

    Get PDF
    Thalassemia can lead to severe transfusion-dependent anemia, and it is the most common genetic disorder in Malaysia. This paper aims to determine the prevalence of thalassemia in the Kadazandusuns, the largest indigenous group in Sabah, East Malaysia. α- and β-thalassemia were confirmed in 33.6% and 12.8%, of the individuals studied respectively. The high prevalence of α- and β-thalassemia in the Kadazandusuns indicates that thalassemia screening, genetic counseling, and prenatal diagnosis should be included as part of their healthcare system. This preliminary paper serves as a baseline for further investigations into the health and genetic defects of the major indigenous population in Sabah, East Malaysia

    Grads at work : a webpage by undergrads for undergrads

    No full text
    Grads at Work was an idea conceived by four final-year undergraduates of the School of Communication Studies. For many of us, graduating with a degree represents the culmination of many years of education, hard work and toil, Hence, as this milestone in life beckons, many undergraduates embark on their frantic search for employment. For some, this search for a good-paying job may start as early as 12 months before the actually graduation. Others take their time and start looking after the final exams. But “kiasu” or otherwise, undergraduates will begin to give the recruitment advertisemcnts more than a cursory glance and wonder how to start formatting their resumes for the first time in their lives. This report highlights the rationalisations behind the conception of Grads at Work and how the project aims to provide a service that fulfils the needs of undergraduates. The report also details the entire process of setting up Grads at Work from idea conceptualisation to the final delivery. Finally, it also tells of our vision and hopes for the project in the future.Bachelor of Communication Studie

    Molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze with a Combine-Amplification Refractory Mutation System

    Get PDF
    BACKGROUND: The interaction of the non-deletional α(+)-thalassaemia mutations Haemoglobin Constant Spring and Haemoglobin Quong Sze with the Southeast Asian double α-globin gene deletion results in non-deletional Haemoglobin H disease. Accurate detection of non-deletional Haemoglobin H disease, which is associated with severe phenotypes, is necessary as these mutations have been confirmed in the Malaysian population. METHODS: DNA from two families with Haemoglobin H disease was extracted from EDTA-anticoagulated whole blood and subjected to molecular analysis for α-thalassaemia. A duplex polymerase chain reaction was used to detect the Southeast Asian α-globin gene deletion. Polymerase chain reaction-restriction fragment length polymorphism analysis was then carried out to determine the presence of Haemoglobin Constant Spring and Haemoglobin Quong Sze. A combine-amplification refractory mutation system protocol was optimised and implemented for the rapid and specific molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze in a single polymerase chain reaction. RESULTS AND CONCLUSIONS: The combine-amplification refractory mutation system for Haemoglobin Constant Spring and Haemoglobin Quong Sze, together with the duplex polymerase chain reaction, provides accurate pre- and postnatal diagnosis of non-deletional Haemoglobin H disease and allows detailed genotype analyses using minimal quantities of DNA

    The use of the amplification refractory mutation system (arms) in the detection of rare beta-thalassemia mutations in the Malays and Chinese in Malaysia

    No full text
    Molecular characterization and prenatal diagnosis for beta-thalassemia can be carried out using the Amplification Refractory Mutation System (ARMS). The ARMS is a rapid and direct molecular technique in which beta-thalassemia mutations are visualized immediately after DNA amplification by gel electrophoresis. In the University of Malaya Medical Center, molecular characterization and prenatal diagnosis for beta-thalassemia is carried out using ARMS for about 96 of the Chinese and 84.6 of the Malay patients. The remaining 4 and 15.4 of the uncharacterized mutations in the Chinese and Malay patients respectively are detected using DNA sequencing. DNA sequencing is an accurate technique but it is more time-consuming and expensive compared with the ARMS. The ARMS for the rare Chinese beta-mutations at position -29 (A-->G) and the ATG-->AGG base substitution at the initiator codon for translation in the beta-gene was developed. In the Malays, ARMS was optimized for the beta-mutations at codon 8/9 (+G), Cap (+1) (A-->C) and the AATAAA-->AATAGA base substitution in the polyadenylation region of the beta-gene. The ARMS protocols were developed by optimization of the parameters for DNA amplification to ensure sensitivity, specificity and reproducibility. ARMS primers (sequences and concentration), magnesium chloride concentration, Taq DNA polymerase and PCR cycling parameters were optimized for the specific amplification of each rare beta-thalassemia mutation. The newly-developed ARMS for the 5 rare beta-thalassemia mutations in the Chinese and Malays in Malaysia will allow for more rapid and cost-effective molecular characterization and prenatal diagnosis for beta-thalassemia in Malaysia

    High Prevalence of Alpha-and Beta-Thalassemia in the Kadazandusuns in East Malaysia: Challenges in Providing Effective Health Care for an Indigenous Group

    No full text
    Thalassemia can lead to severe transfusion-dependent anemia, and it is the most common genetic disorder in Malaysia. This paper aims to determine the prevalence of thalassemia in the Kadazandusuns, the largest indigenous group in Sabah, East Malaysia. α-and β-thalassemia were confirmed in 33.6% and 12.8%, of the individuals studied respectively. The high prevalence of α-and β-thalassemia in the Kadazandusuns indicates that thalassemia screening, genetic counseling, and prenatal diagnosis should be included as part of their healthcare system. This preliminary paper serves as a baseline for further investigations into the health and genetic defects of the major indigenous population in Sabah, East Malaysia
    corecore