14 research outputs found
On the definition and characterisation of multipartite causal (non)separability
The concept of causal nonseparability has been recently introduced, in
opposition to that of causal separability, to qualify physical processes that
locally abide by the laws of quantum theory, but cannot be embedded in a
well-defined global causal structure. While the definition is unambiguous in
the bipartite case, its generalisation to the multipartite case is not so
straightforward. Two seemingly different generalisations have been proposed,
one for a restricted tripartite scenario and one for the general multipartite
case. Here we compare the two, showing that they are in fact inequivalent. We
propose our own definition of causal (non)separability for the general case,
which---although a priori subtly different---turns out to be equivalent to the
concept of "extensible causal (non)separability" introduced before, and which
we argue is a more natural definition for general multipartite scenarios. We
then derive necessary, as well as sufficient conditions to characterise
causally (non)separable processes in practice. These allow one to devise
practical tests, by generalising the tool of witnesses of causal
nonseparability
Communication through coherent control of quantum channels
A completely depolarising quantum channel always outputs a fully mixed state
and thus cannot transmit any information. In a recent Letter [D. Ebler et al.,
Phys. Rev. Lett. 120, 120502 (2018)], it was however shown that if a quantum
state passes through two such channels in a quantum superposition of different
orders - a setup known as the "quantum switch" - then information can
nevertheless be transmitted through the channels. Here, we show that a similar
effect can be obtained when one coherently controls between sending a target
system through one of two identical depolarising channels. Whereas it is
tempting to attribute this effect in the quantum switch to the indefinite
causal order between the channels, causal indefiniteness plays no role in this
new scenario. This raises questions about its role in the corresponding effect
in the quantum switch. We study this new scenario in detail and we see that,
when quantum channels are controlled coherently, information about their
specific implementation is accessible in the output state of the joint
control-target system. This allows two different implementations of what is
usually considered to be the same channel to therefore be differentiated. More
generally, we find that to completely describe the action of a coherently
controlled quantum channel, one needs to specify not only a description of the
channel (e.g., in terms of Kraus operators), but an additional "transformation
matrix" depending on its implementation.Comment: 14 pages, 2 figure
Visibility of Young's interference fringes: Scattered light from small ion crystals
We observe interference in the light scattered from trapped Ca ion
crystals. By varying the intensity of the excitation laser, we study the
influence of elastic and inelastic scattering on the visibility of the fringe
pattern and discriminate its effect from that of the ion temperature and
wave-packet localization. In this way we determine the complex degree of
coherence and the mutual coherence of light fields produced by individual
atoms. We obtain interference fringes from crystals consisting of two, three
and four ions in a harmonic trap. Control of the trapping potential allows for
the adjustment of the interatomic distances and thus the formation of linear
arrays of atoms serving as a regular grating of microscopic scatterers.Comment: Main text: 5 pages, 4 figures. Supplemental Material: 2pages, 1
figur
Anomalous Weak Values Without Post-Selection
A weak measurement performed on a pre- and post-selected quantum system can
result in an average value that lies outside of the observable's spectrum. This
effect, usually referred to as an "anomalous weak value", is generally believed
to be possible only when a non-trivial post-selection is performed, i.e., when
only a particular subset of the data is considered. Here we show, however, that
this is not the case in general: in scenarios in which several weak
measurements are sequentially performed, an anomalous weak value can be
obtained without post-selection, i.e., without discarding any data. We discuss
several questions that this raises about the subtle relation between weak
values and pointer positions for sequential weak measurements. Finally, we
consider some implications of our results for the problem of distinguishing
different causal structures.Comment: 15 page
Multipartite causal relations in quantum theory
Ces dernières années, une grande attention a été portée à l'étude des relations causales en théorie quantique. Plus particulièrement, il a été montré qu'il est possible de concevoir des scénarios dans lesquelles des parties réalisent des opérations qui sont compatibles avec la théorie quantique, mais qui ne peuvent pas être intégrées dans une structure causale globale. De tels ordres causaux indéfinis sont intéressants d'un point de vue fondamental, mais aussi sous l'angle de l'informatique quantique, étant donné qu'ils sortent du paradigme habituel des circuits quantiques, dans lequel on présuppose un ordre causal bien défini. L'objectif principal de cette thèse est d'étudier des relations causales indéfinies dans des scénarios comportant plus de deux parties. Comparées au cas bipartite, les situations multipartites font apparaître des aspects et problèmes nouveaux qui nécessitent d’être clarifiés afin de comprendre fondamentalement les structures causales quantiques indéfinies, et de mettre en évidence leurs implications et leur utilité potentielle pour l’informatique quantique.Une approche particulière pour étudier des relations causales quantiques est le formalisme des matrices de processus. Dans ce formalisme, le concept de la non-séparabilité causale a été introduit afin de qualifier des scénarios qui ne sont pas compatibles avec un ordre causal. Dans le chapitre 2, nous étudions comment généraliser ce concept au cas multipartite, comment caractériser des processus multipartites causalement (non)-séparables, et comment certifier la non-séparabilité causale multipartite. Un autre sujet important est de déterminer quels scénarios quantiques avec un ordre causal indéfini sont physiquement réalisables, et comment ils peuvent être réalisés concrètement. Dans le chapitre 3, nous introduisons deux nouvelles classes de processus quantiques multipartites qui sont réalisables en pratique et nous caractérisons les matrices de processus correspondantes. En particulier, nous définissons la classe des circuits quantiques avec un ordre causal contrôlé de manière quantique. L'exemple le plus simple d'un tel circuit est le quantum switch : un protocole dans lequel l'ordre entre deux opérations est contrôlé par un qubit dans un état de superposition, et qui définit un processus causalement non-séparable. La classe que nous introduisons contient des exemples plus généraux de processus causalement non-séparables avec de nouvelles propriétés. Nous montrons ensuite comment la caractérisation des processus de cette classe nous permet d'étudier de nouvelles applications de la non-séparabilité causale. Dans le chapitre 4, nous étudions un effet particulier de communication quantique dans un scénario avec un contrôle cohérent entre deux canaux quantiques. Ceci nous conduit à une analyse plus générale de la notion de canal quantique contrôlé de façon cohérente, qui implique certaines subtilités. Dans le chapitre 5, nous abordons un autre problème inhérent aux scénarios multipartites, qui est de savoir si un phénomène donné est véritablement multipartite (>) ou non. Plus particulièrement, nous étudions des corrélations (non)-causales >. Dans le chapitre 6, nous mettons en évidence que des valeurs faibles anormales sont possibles sans post-sélection. Enfin, dans le chapitre 7, nous montrons qu'une certaine classe de matrices de processus tripartites, à savoir celles qui sont unitairement extensibles, ont une réalisation sur des sous-systèmes dits temporellement délocalisés, c'est-à -dire des sous-systèmes quantiques qui ne sont pas associés à un temps bien défini. Cette classe est plus grande que la classe des circuits quantiques avec un ordre causal contrôlé de manière quantique. Un point intéressant est qu'elle contient des processus qui violent des inégalités causales.In recent years, the investigation of causal relations in quantum theory has attracted a lot of interest. In particular, it has been found that it is possible to conceive of scenarios where some parties perform operations that are compatible with quantum theory locally, but that cannot be embedded into a global background causal structure. Such indefinite causal structures are of interest from a fundamental point of view, but also from the perspective of quantum information processing, since they do not fit into the usual paradigm of quantum circuits, which assumes a definite causal order. The main aim of this thesis is to study indefinite quantum causal relations involving more than two parties. Compared to the bipartite case, there are many new aspects and complications that arise in multipartite situations, which need to be clarified in order to fundamentally understand quantum causal structures, and to shed light on their implications and potential usefulness for quantum information processing.A suitable mathematical framework for the investigation of quantum causal relations is the process matrix formalism. In this framework, the notion of causal nonseparability was introduced in order to qualify scenarios that are incompatible with a definite causal order. In Chapter 2, we study how to generalise this concept to the multipartite case, how to characterise multipartite causally (non)separable quantum processes, and how to certify multipartite causal nonseparability. Another important topic is to determine which quantum scenarios with indefinite causal order are physically implementable, and how they can be realised concretely. In Chapter 3, we introduce two new classes of physically realisable multipartite quantum processes, and characterise them in terms of their process matrix descriptions. In particular, we define the class of quantum circuits with quantum control of causal order. The simplest example of such a circuit is the quantum switch, a protocol in which the order between two operations is controlled by a qubit in a superposition state, and which defines a causally nonseparable process. The class we introduce also contains more general examples of causally nonseparable processes with new features. We then show how the process matrix characterisation of this class allows us to search for new quantum information processing applications of causal nonseparability. In Chapter 4, we investigate a particular quantum communication effect in a scenario involving coherent control between two quantum channels. This leads us to a more general analysis of the notion of a coherently controlled channel, which involves certain subtilities. In Chapter 5, we turn to another problem that arises in multipartite scenarios, namely whether a given phenomenon is genuinely multipartite or not. More particularly, we study genuinely multipartite (non)causal correlations. In Chapter 6, we show that anomalous weak values are possible without post-selection. In Chapter 7, we show that certain tripartite process matrices, namely those that are unitarily extensible, have a realisation on so-called time-delocalised subsystems, i.e., quantum subsystems that are not associated with a definite time. The class of unitarily extensible tripartite process matrices is larger than the class of quantum circuits with quantum control, and in particular contains processes that violate so-called causal inequalities
Relations causales multipartites en théorie quantique
In recent years, the investigation of causal relations in quantum theory has attracted a lot of interest. In particular, it has been found that it is possible to conceive of scenarios where some parties perform operations that are compatible with quantum theory locally, but that cannot be embedded into a global background causal structure. Such indefinite causal structures are of interest from a fundamental point of view, but also from the perspective of quantum information processing, since they do not fit into the usual paradigm of quantum circuits, which assumes a definite causal order. The main aim of this thesis is to study indefinite quantum causal relations involving more than two parties. Compared to the bipartite case, there are many new aspects and complications that arise in multipartite situations, which need to be clarified in order to fundamentally understand quantum causal structures, and to shed light on their implications and potential usefulness for quantum information processing.A suitable mathematical framework for the investigation of quantum causal relations is the process matrix formalism. In this framework, the notion of causal nonseparability was introduced in order to qualify scenarios that are incompatible with a definite causal order. In Chapter 2, we study how to generalise this concept to the multipartite case, how to characterise multipartite causally (non)separable quantum processes, and how to certify multipartite causal nonseparability. Another important topic is to determine which quantum scenarios with indefinite causal order are physically implementable, and how they can be realised concretely. In Chapter 3, we introduce two new classes of physically realisable multipartite quantum processes, and characterise them in terms of their process matrix descriptions. In particular, we define the class of quantum circuits with quantum control of causal order. The simplest example of such a circuit is the quantum switch, a protocol in which the order between two operations is controlled by a qubit in a superposition state, and which defines a causally nonseparable process. The class we introduce also contains more general examples of causally nonseparable processes with new features. We then show how the process matrix characterisation of this class allows us to search for new quantum information processing applications of causal nonseparability. In Chapter 4, we investigate a particular quantum communication effect in a scenario involving coherent control between two quantum channels. This leads us to a more general analysis of the notion of a coherently controlled channel, which involves certain subtilities. In Chapter 5, we turn to another problem that arises in multipartite scenarios, namely whether a given phenomenon is genuinely multipartite or not. More particularly, we study genuinely multipartite (non)causal correlations. In Chapter 6, we show that anomalous weak values are possible without post-selection. In Chapter 7, we show that certain tripartite process matrices, namely those that are unitarily extensible, have a realisation on so-called time-delocalised subsystems, i.e., quantum subsystems that are not associated with a definite time. The class of unitarily extensible tripartite process matrices is larger than the class of quantum circuits with quantum control, and in particular contains processes that violate so-called causal inequalities.Ces dernières années, une grande attention a été portée à l'étude des relations causales en théorie quantique. Plus particulièrement, il a été montré qu'il est possible de concevoir des scénarios dans lesquelles des parties réalisent des opérations qui sont compatibles avec la théorie quantique, mais qui ne peuvent pas être intégrées dans une structure causale globale. De tels ordres causaux indéfinis sont intéressants d'un point de vue fondamental, mais aussi sous l'angle de l'informatique quantique, étant donné qu'ils sortent du paradigme habituel des circuits quantiques, dans lequel on présuppose un ordre causal bien défini. L'objectif principal de cette thèse est d'étudier des relations causales indéfinies dans des scénarios comportant plus de deux parties. Comparées au cas bipartite, les situations multipartites font apparaître des aspects et problèmes nouveaux qui nécessitent d’être clarifiés afin de comprendre fondamentalement les structures causales quantiques indéfinies, et de mettre en évidence leurs implications et leur utilité potentielle pour l’informatique quantique.Une approche particulière pour étudier des relations causales quantiques est le formalisme des matrices de processus. Dans ce formalisme, le concept de la non-séparabilité causale a été introduit afin de qualifier des scénarios qui ne sont pas compatibles avec un ordre causal. Dans le chapitre 2, nous étudions comment généraliser ce concept au cas multipartite, comment caractériser des processus multipartites causalement (non)-séparables, et comment certifier la non-séparabilité causale multipartite. Un autre sujet important est de déterminer quels scénarios quantiques avec un ordre causal indéfini sont physiquement réalisables, et comment ils peuvent être réalisés concrètement. Dans le chapitre 3, nous introduisons deux nouvelles classes de processus quantiques multipartites qui sont réalisables en pratique et nous caractérisons les matrices de processus correspondantes. En particulier, nous définissons la classe des circuits quantiques avec un ordre causal contrôlé de manière quantique. L'exemple le plus simple d'un tel circuit est le quantum switch : un protocole dans lequel l'ordre entre deux opérations est contrôlé par un qubit dans un état de superposition, et qui définit un processus causalement non-séparable. La classe que nous introduisons contient des exemples plus généraux de processus causalement non-séparables avec de nouvelles propriétés. Nous montrons ensuite comment la caractérisation des processus de cette classe nous permet d'étudier de nouvelles applications de la non-séparabilité causale. Dans le chapitre 4, nous étudions un effet particulier de communication quantique dans un scénario avec un contrôle cohérent entre deux canaux quantiques. Ceci nous conduit à une analyse plus générale de la notion de canal quantique contrôlé de façon cohérente, qui implique certaines subtilités. Dans le chapitre 5, nous abordons un autre problème inhérent aux scénarios multipartites, qui est de savoir si un phénomène donné est véritablement multipartite (>) ou non. Plus particulièrement, nous étudions des corrélations (non)-causales >. Dans le chapitre 6, nous mettons en évidence que des valeurs faibles anormales sont possibles sans post-sélection. Enfin, dans le chapitre 7, nous montrons qu'une certaine classe de matrices de processus tripartites, à savoir celles qui sont unitairement extensibles, ont une réalisation sur des sous-systèmes dits temporellement délocalisés, c'est-à -dire des sous-systèmes quantiques qui ne sont pas associés à un temps bien défini. Cette classe est plus grande que la classe des circuits quantiques avec un ordre causal contrôlé de manière quantique. Un point intéressant est qu'elle contient des processus qui violent des inégalités causales
Existence of processes violating causal inequalities on time-delocalised subsystems
info:eu-repo/semantics/publishe
Existence of processes violating causal inequalities on time-delocalised subsystems
It has been shown that it is theoretically possible for there to exist quantum and classical processes in which the operations performed by separate parties do not occur in a well-defined causal order. A central question is whether and how such processes can be realised in practice. In order to provide a rigorous argument for the notion that certain such processes have a realisation in standard quantum theory, the concept of time-delocalised quantum subsystem has been introduced. In this paper, we show that realisations on time-delocalised subsystems exist for all unitary extensions of tripartite processes. Remarkably, this class contains processes that violate causal inequalities, i.e., that can generate correlations that witness the incompatibility with definite causal order in a device-independent manner. We consider a known striking example of such a tripartite classical process that has a unitary extension, and study its realisation on time-delocalised subsystems. We then discuss the question of what a violation of causal inequalities implies in this setting, and argue that it is indeed a meaningful concept to show the absence of a definite causal order between the variables of interest
Quantum Circuits with Classical Versus Quantum Control of Causal Order
International audienceQuantum supermaps are transformations that map quantum operations to quantum operations. It is known that quantum supermaps which respect a definite, predefined causal order between their input operations correspond to fixed-order quantum circuits, also called quantum combs. A systematic understanding of the physical interpretation of more general types of quantum supermaps—in particular, those incompatible with a definite causal structure—is however lacking. In this paper, we identify two types of circuits that naturally generalize the fixed-order case and that likewise correspond to distinct classes of quantum supermaps, which we fully characterize. We first introduce “quantum circuits with classical control of causal order,” in which the order of operations is still well defined, but not necessarily fixed in advance: it can, in particular, be established dynamically, in a classically controlled manner, as the circuit is being used. We then consider “quantum circuits with quantum control of causal order,” in which the order of operations is controlled coherently. The supermaps described by these classes of circuits are physically realizable, and the latter encompasses all known examples of physically realizable processes with indefinite causal order, including the celebrated “quantum switch.” Interestingly, it also contains other examples arising from the combination of dynamical and coherent control of causal order, and we detail explicitly one such process. Nevertheless, we show that quantum circuits with quantum control of causal order can only generate “causal” correlations, compatible with a well-defined causal order. We furthermore extend our considerations to probabilistic circuits that produce also classical outcomes, and we demonstrate by an example how the characterizations derived in this work allow us to identify advantages for quantum information processing tasks that could be demonstrated in practice