311 research outputs found

    Seismic Stabilization of Historic Adobe Structures: Final Report of the Getty Seismic Adobe Project

    Get PDF
    Provides the final report of GSAP activities, and the first publication to provide an overview of the results of scale-model laboratory research along with field data from a survey of damage to historic adobe buildings after an actual earthquake

    Fine Structure in the Circumstellar Environment of a Young, Solar-like Star: the Unique Eclipses of KH 15D

    Full text link
    Results of an international campaign to photometrically monitor the unique pre-main sequence eclipsing object KH 15D are reported. An updated ephemeris for the eclipse is derived that incorporates a slightly revised period of 48.36 d. There is some evidence that the orbital period is actually twice that value, with two eclipses occurring per cycle. The extraordinary depth (~3.5 mag) and duration (~18 days) of the eclipse indicate that it is caused by circumstellar matter, presumably the inner portion of a disk. The eclipse has continued to lengthen with time and the central brightness reversals are not as extreme as they once were. V-R and V-I colors indicate that the system is slightly bluer near minimum light. Ingress and egress are remarkably well modeled by the passage of a knife-edge across a limb-darkened star. Possible models for the system are briefly discussed.Comment: 19 pages, 5 figure

    Wild Bird Influenza Survey, Canada, 2005

    Get PDF
    Of 4,268 wild ducks sampled in Canada in 2005, real-time reverse transcriptase–PCR detected influenza A matrix protein (M1) gene sequence in 37% and H5 gene sequence in 5%. Mallards accounted for 61% of samples, 73% of M1-positive ducks, and 90% of H5-positive ducks. Ducks hatched in 2005 accounted for 80% of the sample

    Line orientation adaptation: local or global?

    Get PDF
    Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines

    Reference Ranges for the Clinical Laboratory Derived from a Rural Population in Kericho, Kenya

    Get PDF
    The conduct of Phase I/II HIV vaccine trials internationally necessitates the development of region-specific clinical reference ranges for trial enrolment and participant monitoring. A population based cohort of adults in Kericho, Kenya, a potential vaccine trial site, allowed development of clinical laboratory reference ranges. Lymphocyte immunophenotyping was performed on 1293 HIV seronegative study participants. Hematology and clinical chemistry were performed on up to 1541 cohort enrollees. The ratio of males to females was 1.9∢1. Means, medians and 95% reference ranges were calculated and compared with those from other nations. The median CD4+ T cell count for the group was 810 cells/Β΅l. There were significant gender differences for both red and white blood cell parameters. Kenyan subjects had lower median hemoglobin concentrations (9.5 g/dL; range 6.7–11.1) and neutrophil counts (1850 cells/Β΅l; range 914–4715) compared to North Americans. Kenyan clinical chemistry reference ranges were comparable to those from the USA, with the exception of the upper limits for bilirubin and blood urea nitrogen, which were 2.3-fold higher and 1.5-fold lower, respectively. This study is the first to assess clinical reference ranges for a highland community in Kenya and highlights the need to define clinical laboratory ranges from the national community not only for clinical research but also care and treatment

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures

    A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa

    Get PDF
    Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a Ξ²-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen

    Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret

    Get PDF
    Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected β€˜donor’ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa

    HIV/HCV Co-infection: Pathogenesis, Clinical Complications, Treatment, and New Therapeutic Technologies

    Get PDF
    World-wide, hepatitis C virus (HCV) accounts for approximately 130 million chronic infections, with an overall 3% prevalence. Four to 5 million persons are co-infected with HIV. It is well established that HIV has a negative impact on the natural history of HCV, including a higher rate of viral persistence, increased viral load, and more rapid progression to fibrosis, end-stage liver disease, and death. Whether HCV has a negative impact on HIV disease progression continues to be debated. However, following the introduction of effective combination antiretroviral therapy, the survival of coinfected individuals has significantly improved and HCV-associated diseases have emerged as the most important co-morbidities. In this review, we summarize the newest studies regarding the pathogenesis of HIV/HCV coinfection, including effects of coinfection on HIV disease progression, HCV-associated liver disease, the immune system, kidney and cardiovascular disease, and neurologic status; and effectiveness of current anti-HIV and HCV therapies and proposed new treatment strategies

    Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma

    Get PDF
    The management of CNS tumors is limited by the blood-brain barrier (BBB), a vascular interface that restricts the passage of most molecules from the blood into the brain. Here we show that phage particles targeted with certain ligand motifs selected in vivo from a combinatorial peptide library can cross the BBB under normal and pathological conditions. Specifically, we demonstrated that phage clones displaying an ironmimic peptide were able to target a protein complex of transferrin and transferrin receptor (TfR) through a non-canonical allosteric binding mechanism and that this functional protein complex mediated transport of the corresponding viral particles into the normal mouse brain. We also showed that, in an orthotopic mouse model of human glioblastoma, a combination of TfR overexpression plus extended vascular permeability and ligand retention resulted in remarkable brain tumor targeting of chimeric adeno-associated virus/ phage particles displaying the iron-mimic peptide and carrying a gene of interest. As a proof of concept, we delivered the HSV thymidine kinase gene for molecular-genetic imaging and targeted therapy of intracranial xenografted tumors. Finally, we established that these experimental findings might be clinically relevant by determining through human tissue microarrays that many primary astrocytic tumors strongly express TfR. Together, our combinatorial selection system and results may provide a translational avenue for the targeted detection and treatment of brain tumors
    • …
    corecore