286 research outputs found

    The Varicella-Zoster virus origin-binding protein can substitute for the herpes simplex virus origin-binding protein in a transient origin-dependent DNA replication assay in insect cells

    Get PDF
    AbstractWe isolated two recombinant baculoviruses each of which expresses a varicella-zoster virus (VZV) homolog of one ofthe seven herpes simplex virus type 1 (HSV-1) genes required for DNA replication. We performed transient origin-dependent DNA replication assays in insect cells in which we substituted a baculovirus which expresses a VZV protein for a baculovirus which expresses its HSV homolog. VZV gene 51 protein was found to be able to support origin-dependent DNA synthesis when it was substituted for UL9, the HSV-1 origin-binding protein (01313). This occurred whether an HSV-1 or a VZV origin-containing plasmid was used in the assay. These results suggest that VZV gene 51 protein is able to interact with the HSV replication machinery, and in light of the extensive structural divergence of these proteins, it suggests that initiation of VZV and HSV-1 DNA synthesis may involve a limited number of interactions between the OBP and other replication factors. Substitution of infected-cell protein 8 (ICP8), the major single-stranded DNA-binding protein of HSV-1, with VZV gene 29 protein, however, did not result in amplification of plasmids containing either an HSV-1 or a VZV origin. In the absence of ICP8, addition of both VZV gene 51 protein and gene 29 protein was also negative for origin-dependent replication whether or not UL9 was present. Although demonstration that our baculovirus-expressed VZV gene 29 protein is functional for DNA replication will await development of a VZV replication system, our results suggest that VZV gene 29 protein is unable to interact functionally with one or more of the HSV replication proteins. This approach should contribute to efforts to define the interactions among the alphaherpesvirus DNA replication proteins

    IODP Expedition 325: The Great Barrier Reefs Reveal Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age

    Get PDF
    The timing and courses of deglaciations are key components in understanding the global climate system. Cyclic changes in global climate have occurred, with growth and decay of high latitude ice sheets, for the last two million years. It is believed that these fluctuations are mainly controlled by periodic changes to incoming solar radiation due to the changes in Earth’s orbit around the sun. However, not all climate variations can be explained by this process, and there is the growing awareness of the important role of internalclimate feedback mechanisms. Understanding the nature of these feedbacks with regard to the timing of abrupt global sea-level and climate changes is of prime importance. The tropical ocean is one of the major components of the feedback system, and hence reconstructions of temporal variations in sea-surface conditions will greatly improve our understanding of the climate system. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recoverfossil coral reef deposits. The main aim of the expedition was to understand the environmental changes that occurred during the last ice age and subsequent deglaciation, and more specifically (1) establish the course of sea-level change, (2) reconstruct the oceanographic conditions, and (3) determine the response of the reef to these changes. We recovered coral reef deposits from water depths down to 126 m that ranged in age from 9,000 years to older than 30,000 years ago. Given that the interval of the dated materials covers several paleoclimatologically important events, includingthe Last Glacial Maximum, we expect that ongoing scientific analyses will fulfill the objectives of the expedition

    Risk for Avian Influenza Virus Exposure at Human–Wildlife Interface

    Get PDF
    To assess risk for human exposure to avian influenza viruses (AIV), we sampled California wild birds and marine mammals during October 2005–August 2007and estimated human–wildlife contact. Waterfowl hunters were 8 times more likely to have contact with AIV-infected wildlife than were persons with casual or occupational exposures (p<0.0001)

    Interleukin-21 Is Critically Required in Autoimmune and Allogeneic Responses to Islet Tissue in Murine Models

    Get PDF
    OBJECTIVE-Type 1 diabetes is an incurable chronic autoimmune disease. Although transplantation of pancreatic islets may serve as a surrogate source of insulin, recipients are subjected to a life of immunosuppression. Interleukin (IL)-21 is necessary for type 1 diabetes in NOD mice. We examined the efficacy of an IL-21-targeted therapy on prevention of diabetes in NOD mice, in combination with syngeneic islet transplantation. In addition, we assessed the role of IL-21 responsiveness in islet allograft rejection in mouse animal models. RESEARCH DESIGN AND METHODS-NOD mice were treated with IL-21R/Fc, an IL-21-neutralizing chimeric protein. This procedure was combined with syngeneic islet transplantation to treat diabetic NOD mice. Survival of allogeneic islet grafts in IL-21R-deficient mice was also assessed. RESULTS-Evidence is provided that IL-21 is continually required by the autoimmune infiltrate, such that insulitis was reduced and reversed and diabetes inhibited by neutralization of IL-21 at a late preclinical stage. Recovery from autoimmune diabetes was achieved by combining neutralization of IL-21 with islet transplantation. Furthermore, IL-21-responsiveness by CD8+ T-cells was sufficient to mediate islet allograft rejection. CONCLUSIONS-Neutralization of IL-21 in NOD mice can inhibit diabetes, and when paired with islet transplantation, this therapeutic approach restored normoglycemia. The influence of IL-21 on a graft-mounted immune response was robust, since the absence of IL-21 signaling prevented islet allograft rejection. These findings suggest that therapeutic manipulation of IL-21 may serve as a suitable treatment for patients with type 1 diabetes. Diabetes 60:867-875, 20111151sciescopu

    An integrated general practice and pharmacy-based intervention to promote the use of appropriate preventive medications among individuals at high cardiovascular disease risk: protocol for a cluster randomized controlled trial

    Get PDF
    Background: Cardiovascular diseases (CVD) are responsible for significant morbidity, premature mortality, and economic burden. Despite established evidence that supports the use of preventive medications among patients at high CVD risk, treatment gaps remain. Building on prior evidence and a theoretical framework, a complex intervention has been designed to address these gaps among high-risk, under-treated patients in the Australian primary care setting. This intervention comprises a general practice quality improvement tool incorporating clinical decision support and audit/feedback capabilities; availability of a range of CVD polypills (fixed-dose combinations of two blood pressure lowering agents, a statin ± aspirin) for prescription when appropriate; and access to a pharmacy-based program to support long-term medication adherence and lifestyle modification. Methods: Following a systematic development process, the intervention will be evaluated in a pragmatic cluster randomized controlled trial including 70 general practices for a median period of 18 months. The 35 general practices in the intervention group will work with a nominated partner pharmacy, whereas those in the control group will provide usual care without access to the intervention tools. The primary outcome is the proportion of patients at high CVD risk who were inadequately treated at baseline who achieve target blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) levels at the study end. The outcomes will be analyzed using data from electronic medical records, utilizing a validated extraction tool. Detailed process and economic evaluations will also be performed. Discussion: The study intends to establish evidence about an intervention that combines technological innovation with team collaboration between patients, pharmacists, and general practitioners (GPs) for CVD prevention. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN1261600023342
    corecore