9 research outputs found

    Optimizing energy costs in a zinc and lead mine

    Get PDF
    Boliden Tara Mines Ltd. consumed 184.7 GWh of electricity in 2014, equating to over 1% of the national demand of Ireland or approximately 35,000 homes. Ireland's industrial electricity prices, at an average of 13 c/KWh in 2014, are amongst the most expensive in Europe. Cost effective electricity procurement is ever more pressing for businesses to remain competitive. In parallel, the proliferation of intelligent devices has led to the industrial Internet of Things paradigm becoming mainstream. As more and more devices become equipped with network connectivity, smart metering is fast becoming a means of giving energy users access to a rich array of consumption data. These modern sensor networks have facilitated the development of applications to process, analyse, and react to continuous data streams in real-time. Subsequently, future procurement and consumption decisions can be informed by a highly detailed evaluation of energy usage. With these considerations in mind, this paper uses variable energy prices from Ireland’s Single Electricity Market, along with smart meter sensor data, to simulate the scheduling of an industrial-sized underground pump station in Tara Mines. The objective is to reduce the overall energy costs whilst still functioning within the system's operational constraints. An evaluation using real-world electricity prices and detailed sensor data for 2014 demonstrates significant savings of up to 10.72% over the year compared to the existing control systems

    Multimodal switching of a redox-active macrocycle

    Get PDF
    Molecules that can switch between multiple stable states in response to stimuli are promising for many applications, but are challenging to construct. Here, the authors design a resorcinarene switching manifold with multiple oxidation states and coupled charge-transfer states, which can access up to five distinct switch-states with unique optical outputs

    Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes

    Get PDF
    Singlet oxygen sensitization involving a class of hemiquinonoid-substituted resorcinarenes prepared from the corresponding 3,5-di-t-butyl-4-hydroxyphenyl-substituted resorcinarenes is reported. Based on variation in the molecular structures, quantum yields comparable with that of the well-known photosensitizing compound meso-tetraphenylporphyrin were obtained for the octabenzyloxy-substituted double hemiquinonoid resorcinarene reported herein. The following classes of compounds were studied: benzyloxy-substituted resorcinarenes, acetyloxy-substituted resorcinarenes and acetyloxy-substituted pyrogallarenes. Single crystal X-ray crystallographic analyses revealed structural variations in the compounds with conformation (i.e., rctt, rccc, rcct) having some influence on the identity of hemiquinonoid product available. Multiplicity of hemiquinonoid group affects singlet oxygen quantum yield with those doubly substituted being more active than those containing a single hemiquinone. Compounds reported here lacking hemiquinonoid groups are inactive as photosensitizers. The term ‘fuchsonarene’ (fuchson + arene of resorcinarene) is proposed for use to classify the compounds

    Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and ÎČ-substitution

    No full text
    Meso-5,10,15,20-tetrakis-3,5-di-tert-butyl-4-oxocyclohexadienylideneporphyrinogen, OxP, is a versatile, highly colored chromophore derived from meso-5,10,15,20-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin. It exhibits a wide range of chromogenic responses to solvents (solvatochromism), anions and acidic media (halochromism) making it potentially useful as an analytical reagent. The chromogenic responses of OxP can be modulated by varying its chemical structure, and this is reviewed here based on the introduction of substituents at central nitrogen atoms or pyrrolic ÎČ -positions. OxP and its N-alkylated derivates Bn2OxP and Bn4OxP have been used to estimate acidity in non-polar solvents. Bn2OxP can also be used to determine enantiomeric excesses of chiral substances. N-alkylation has also been used to introduce higher functional groups such as porphyrins to prepare self-assembling systems. ÎČ-Substitution has been used to introduce selectivity of anion interactions including towards basic anions (fluoride, cyanide) and polyoxoanions (nitrate, perchlorate, etc.). These aspects make OxP a highly adaptable tetrapyrrole molecule for sensing and other applications

    Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units

    No full text
    International audiencePeripherally substituted tetradecaazaheptacene (NHp) compounds, exhibiting amphiprotism-coupled emission, have been synthesized. X-ray crystallography reveals a planar acene-like chromophore, and electronic absorption and emission occur in the near-infrared biological transparency window (650-900 nm). The compounds exhibit long-wavelength emission with photoluminescence quantum yields Ί up to ∌0.61 at 686 nm, with the monodeprotonated state Ί ≈ 0.58 at 712 nm. This unprecedented highly nitrogenous chromophore illustrates the stability and utility of the pyrazinacenes for different applications based on their photophysical properties and chemical structures
    corecore