683 research outputs found

    Are Waterfowl Food Resources Limited during Spring Migration? A Bioenergetic Assessment of Playas in Nebraska’s Rainwater Basin

    Get PDF
    Accurate bioenergetic carrying capacity estimates of wetlands on public and private lands, as well as those managed for crop production are important for managing waterfowl populations and habitats. Given the importance of wetlands in the Rainwater Basin region of Nebraska for spring migrating waterfowl, we quantified and compared seed and aquatic invertebrate biomass and true metabolizable energy (TME) at three wetland types; public wetlands, wetlands enrolled in the Wetlands Reserve Program (WRP), and cropped wetlands. Median seed biomass estimates at public,WRP, and cropped wetlands were 593 kg/ha, 561 kg/ha, and 419 kg/ha respectively. Cumulative TME varied among wetland type, with greater TME at cropped wetlands (2431 kcal/kg) than public (1740 kcal/kg) and WRP wetlands (1781 kcal/kg). Seed biomass estimates from this study were statistically greater than those currently used for management planning in the RWB, however, TME estimates were statistically lower than estimates currently assumed for WRP and public wetlands. Our estimates for aquatic invertebrate biomass were approximately 40-fold less than seed biomass estimates. Based on spring ponding frequency at wetlands in Nebraska’s Rainwater Basin, and the caloric estimates derived for each wetland type, we concluded that the regions wetlands meet the energetic demand of spring migrating waterfowl during 10% of years

    Light Goose Conservation Order Effects on Nontarget Waterfowl Behavior and Energy Expenditure

    Get PDF
    When the Light Goose Conservation Order (LGCO) was established during 1999 in the Rainwater Basin of Nebraska, USA, LGCO activities were limited to 4 days/week and 16 public wetlands were closed to the LGCO to limit disturbance to non-target waterfowl during this energetically important time period. However, the effects of LGCO activities on waterfowl behavior and energy expenditure are relatively unknown in this critical waterfowl staging area. To evaluate LGCO effects on target and nontarget species, we paired wetlands open and closed to LGCO and recorded waterfowl behavior and hunter encounters during springs 2011 and 2012. We constructed hourly energy expenditure models based on behavior data collected for mallards (Anas platyrhynchos) and northern pintails (A. acuta). In 2011, dabbling ducks (Anas spp.) spent more time feeding and less time resting in wetlands closed to hunting during early season when the majority of hunting encounters occurred; behaviors did not differ between hunt categories during late season when hunting activities subsided. However, in 2012, dabbling ducks spent more time feeding and less time resting in wetlands open to hunting during early and late seasons. We detected no differences in behaviors of lesser snow geese (Chen caerulescens) or greater white-fronted geese (Anser albifrons) between hunting categories in early season. Mallards had slightly greater energy expenditure on wetlands closed to hunting (x =38.94 +/- 0.31 kJ/bird/hr), compared with wetlands open to hunting (x = 37.87 +/- 0.32 kJ/bird/hr); therefore, greater energy spent by mallards cannot be attributed to hunting disturbance. We also detected no differences in dabbling duck behavior or energy expenditure between days open or closed to hunting in the region. A refuge system of wetlands closed to LGCO activities in the Rainwater Basin may be an important management strategy in providing reduced disturbance for non-target waterfowl species in some years

    Light Goose Conservation Order Effects on Nontarget Waterfowl Behavior and Energy Expenditure

    Get PDF
    When the Light Goose Conservation Order (LGCO) was established during 1999 in the Rainwater Basin of Nebraska, USA, LGCO activities were limited to 4 days/week and 16 public wetlands were closed to the LGCO to limit disturbance to nontarget waterfowl during this energetically important time period. However, the effects of LGCO activities on waterfowl behavior and energy expenditure are relatively unknown in this critical waterfowl staging area. To evaluate LGCO effects on target and nontarget species, we paired wetlands open and closed to LGCO and recorded waterfowl behavior and hunter encounters during springs 2011 and 2012. We constructed hourly energy expenditure models based on behavior data collected for mallards (Anas platyrhynchos) and northern pintails (A. acuta). In 2011, dabbling ducks (Anas spp.) spent more time feeding and less time resting in wetlands closed to hunting during early season when the majority of hunting encounters occurred; behaviors did not differ between hunt categories during late season when hunting activities subsided. However, in 2012, dabbling ducks spent more time feeding and less time resting in wetlands open to hunting during early and late seasons. We detected no differences in behaviors of lesser snow geese (Chen caerulescens) or greater white-fronted geese (Anser albifrons) between hunting categories in early season. Mallards had slightly greater energy expenditure on wetlands closed to hunting (x = 38.94 ± 0.31 kJ/bird/hr), compared with wetlands open to hunting (x = 37.87 ± 0.32 kJ/bird/hr); therefore, greater energy spent by mallards cannot be attributed to hunting disturbance. We also detected no differences in dabbling duck behavior or energy expenditure between days open or closed to hunting in the region. A refuge system of wetlands closed to LGCO activities in the Rainwater Basin may be an important management strategy in providing reduced disturbance for nontarget waterfowl species in some years

    Light Goose Conservation Order Effects on Nontarget Waterfowl Behavior and Energy Expenditure

    Get PDF
    When the Light Goose Conservation Order (LGCO) was established during 1999 in the Rainwater Basin of Nebraska, USA, LGCO activities were limited to 4 days/week and 16 public wetlands were closed to the LGCO to limit disturbance to nontarget waterfowl during this energetically important time period. However, the effects of LGCO activities on waterfowl behavior and energy expenditure are relatively unknown in this critical waterfowl staging area. To evaluate LGCO effects on target and nontarget species, we paired wetlands open and closed to LGCO and recorded waterfowl behavior and hunter encounters during springs 2011 and 2012. We constructed hourly energy expenditure models based on behavior data collected for mallards (Anas platyrhynchos) and northern pintails (A. acuta). In 2011, dabbling ducks (Anas spp.) spent more time feeding and less time resting in wetlands closed to hunting during early season when the majority of hunting encounters occurred; behaviors did not differ between hunt categories during late season when hunting activities subsided. However, in 2012, dabbling ducks spent more time feeding and less time resting in wetlands open to hunting during early and late seasons. We detected no differences in behaviors of lesser snow geese (Chen caerulescens) or greater white-fronted geese (Anser albifrons) between hunting categories in early season. Mallards had slightly greater energy expenditure on wetlands closed to hunting (x = 38.94 ± 0.31 kJ/bird/hr), compared with wetlands open to hunting (x = 37.87 ± 0.32 kJ/bird/hr); therefore, greater energy spent by mallards cannot be attributed to hunting disturbance. We also detected no differences in dabbling duck behavior or energy expenditure between days open or closed to hunting in the region. A refuge system of wetlands closed to LGCO activities in the Rainwater Basin may be an important management strategy in providing reduced disturbance for nontarget waterfowl species in some years

    Diets and Food Selection of Female Mallards and Blue-Winged Teal During Spring Migration

    Get PDF
    Waterfowl nutritional requirements and food availability at migration stopover habitats may differ from those at nesting or wintering areas. Although there is little information on factors that influence waterfowl diets and food selection during migration, we hypothesized that bird age and wetland density in the surrounding landscape would influence food selection. Thus, the objective of this study was to quantify mallard Anas platyrhynchos and blue-winged teal Anas discors diets during migration and evaluate effects of age and wetland density on waterfowl food selection. We collected 30 mallards and 29 blue-winged teal with food items present in esophagi from wetlands in south-central Nebraska during spring 2008 and 2009. Smartweed Polygonum spp. and barnyard grass Echinochloa spp. were the most common seeds found in both mallards and blue-winged teal, while Naididae and Chironomidae larvae were the most common invertebrates in mallard and blue-winged teal diets, respectively. Invertebrates were consumed by both species in greater proportion than available. Both mallards and blue-winged teal collected in wetland complexes selected some seeds over others, whereas birds in isolated wetlands foraged on foods in proportion to availability. After-hatch-year mallards also selected for some seeds over others, as compared with hatch-year birds, which foraged opportunistically on available foods. If after-hatch-year birds and birds in wetland complexes are able to be more selective in their diets relative to food availability at individual wetlands, they may be able to acquire and replenish lipids reserves more efficiently than hatch-year birds or birds in areas with lower wetland densities

    A review of Bayesian belief network models as decision-support tools for wetland conservation : are water birds potential umbrella taxa?

    Get PDF
    10 pagesCreative approaches to identifying umbrella species hold promise for devising effective surrogates of ecological communities or ecosystems. However, mechanistic niche models that predict range or habitat overlap among species may yet lack development. We reviewed literature on taxon-centered Bayesian belief network (BBN) models to explore a novel approach to identify umbrella taxa identifying taxonomic groups that share the largest proportion of habitat requirements (i.e., states of important habitat variables) with other wetland-dependent taxa. We reviewed and compiled published literature to provide a comprehensive and reproducible account of the current understanding of habitat requirements for freshwater, wetland-dependent taxa using BBNs. We found that wetland birds had the highest degree of shared habitat requirements with other taxa, and consequently may be suitable umbrella taxa in freshwater wetlands. Comparing habitat requirements using a BBN approach to build species distribution models, this review also identified taxa that may not benefit from conservation actions targeted at umbrella taxa by identifying taxa with unique habitat requirements not shared with umbrellas. Using a standard node set that accurately and comprehensively represents the ecosystem in question, BBNs could be designed to improve identification of umbrella taxa. In wetlands, expert knowledge about hydrology, geomorphology and soils could add important information regarding physical landscape characteristics relevant to species. Thus, a systems-oriented framework may improve overarching inferences from BBNs and subsequent utility to conservation planning and management.Postprin

    A multi-isotope (δ13C, δ15N, δ34S, δ2H) approach to establishing migratory connectivity in lesser snow geese: Tracking an overabundant species

    Get PDF
    Expanding populations of North American midcontinent lesser snow geese (Anser caerulescens caerulescens) have potential to alter ecosystems throughout the Arctic and subarctic where they breed. Efforts to understand origins of harvested lesser snow geese to better inform management decisions have traditionally required mark-recapture approaches, while aerial photographic surveys have typically been used to identify breeding distributions. As a potential alternative, isotopic patterns that are metabolically fixed within newly grown flight feathers following summer molting could provide inferences regarding geographic breeding origin of individuals, without the need for prior capture. Our objective was to assess potential to use four stable isotopes (δ13C, δ15N, δ34S, δ2H) from feather material to determine breeding origins. We obtained newly grown flight feathers from individuals during summer banding at three Arctic and two subarctic breeding colonies in 2014 (n = 56) and 2016 (n = 45). We used linear discriminant analyses to predict breeding origins from models using combinations of stable isotopes as predictors and evaluated model accuracy when predicting colony, subregion, or subpopulation levels. We found a strong inverse relationship between δ2H values and increasing latitude (R2 = 0.83), resulting in differences (F4, 51 = 90.41, P \u3c 0.0001) among sampled colonies. No differences in δ13C or δ15N were detected among colonies, although δ34S in Akimiski Island, Baffin Island, and Karrak Lake were more enriched (F4, 51 = 11.25, P \u3c 0.0001). Using δ2H values as a predictor, discriminant analyses improved accuracy in classification level as precision decreased [model accuracy = 67% (colony), 88% (subregion), 94% (subpopulation)]. Application of the isotopic methods we describe could be used to provide an alternative monitoring method of population metrics, such as overall breeding population distribution, region-specific productivity and migratory connectivity that are informative to management decision makers and provide insight into cross-seasonal effects that may influence migratory behavior

    Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (\u3ci\u3eDryocopus pileatus\u3c/i\u3e), and its influence on foraging substrate selection

    Get PDF
    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV)wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles.We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi.Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms

    Visual cues for woodpeckers: light reflectance of decayed wood varies by decay fungus

    Get PDF
    The appearance of wood substrates is likely relevant to bird species with life histories that require regular interactions with wood for food and shelter. Woodpeckers detect decayed wood for cavity placement or foraging, and some species may be capable of detecting trees decayed by specific fungi; however, a mechanism allowing for such specificity remains unidentified.We hypothesized that decay fungi associated with woodpecker cavity sites alter the substrate reflectance in a species-specific manner that is visually discriminable by woodpeckers. We grew 10 species of wood decay fungi from pure cultures on sterile wood substrates of 3 tree species. We then measured the relative reflectance spectra of decayed and control wood wafers and compared them using the receptor noise-limited (RNL) color discrimination model. The RNL model has been used in studies of feather coloration, egg shells, flowers, and fruit to model how the colors of objects appear to birds. Our analyses indicated 6 of 10 decayed substrate/control comparisons were above the threshold of discrimination (i.e., indicating differences discriminable by avian viewers), and 12 of 13 decayed substrate comparisons were also above threshold for a hypothetical woodpecker. We conclude that woodpeckers should be capable of visually detecting decayed wood on trees where bark is absent, and they should also be able to detect visually species-specific differences in wood substrates decayed by fungi used in this study. Our results provide evidence for a visual mechanism by which woodpeckers could identify and select substrates decayed by specific fungi, which has implications for understanding ecologically important woodpecker–fungus interactions. El aspecto de los sustratos de madera posiblemente sea relevante para especies de aves que tienen historias de vida que dependen de interacciones regulares con la madera para alimentaci´on y resguardo. Los pa´jaros carpinteros detectan la madera degradada para establecer sus cavidades o para forrajear, y algunas especies podr´ıan ser capaces de detectar a´rboles que son degradadas por alg´un hongo en particular. Sin embargo, a´un no se identifica un mecanismo que permita identificar tal especificidad. Nuestra hip´otesis es que los hongos xil ´ofagos asociados a sitios con cavidades para carpinteros alteran la reflectancia del sustrato en una manera espec´ıfica a especie que es visualmente discernible para los carpinteros. Cultivamos 10 especies de hongos xil ´ofagos a partir de cultivos puros en sustratos est´eriles de madera de tres especies de a´rboles. A continuaci´on, medimos el espectro de reflectancia de la madera de la madera degradada y trozos de madera control, y las comparamos entre s´ı usando el modelo de discriminaci´on de color del receptor de ruido limitado (RNL, por sus siglas en ingl´es). El modelo RNL ha sido utilizado en estudios de coloraci´on de plumas, cascar´on de huevo, flores y frutos para modelar c´omo perciben las aves el color de los objetos. Nuestros ana´lisis indican que 6 de 10 comparaciones sustrato/control estuvieron por encima del umbral de discriminaci´on (e.g., indicando diferencias discernibles por observadores aviares) y que las comparaciones de 12 de los 13 sustratos degradados estuvieron por encima del umbral para un carpintero hipot´etico. Concluimos que los carpinteros deben ser capaces de detectar visualmente la madera degradada en a´rboles donde la corteza esta´ ausente y tambi´en deben detectar visualmente diferencias espec´ıficas a especie en los sustratos de madera degradada por los hongos utilizados en este estudio. Nuestros resultados proveen evidencia de un mecanismo visual por medio del cual los pa´jaros carpinteros pueden identificar y seleccionar los sustratos degradados por hongos espec´ıficos, lo cual tiene implicaciones en nuestro entendimiento de las importantes interacciones entre carpinteros y hongos

    Policy Comparison of Lead Hunting Ammunition Bans and Voluntary Nonlead Programs for California Condors

    Get PDF
    The endangered California condor (Gymnogyps californianus) is negatively affected by lead poisoning from spent lead‐based hunting ammunition. Because lead poisoning is the primary mortality factor affecting condors, the California Fish and Game Commission banned lead hunting ammunition during 2008 in the southern California condor range followed by a statewide ban implemented in 2019. In contrast, the Arizona Game and Fish Department instituted an outreach and awareness program encouraging voluntary use of nonlead hunting ammunition in the northern portion of the state during 2005 and a similar program was launched in Utah during 2012. The juxtaposition of policy tools provided a unique opportunity to evaluate the intended efforts to mitigate lead exposure in condors and their respective positive and negative effects. Herein we reflect upon the effectiveness of lead policy actions in the 3‐state region on the basis of condor blood‐lead levels, population status, and hunter awareness of the issue and use of nonlead hunting ammunition
    corecore