96 research outputs found

    The Drosophila MOS Ortholog Is Not Essential for Meiosis

    Get PDF
    AbstractIn metazoan oocytes, a metaphase arrest coordinates the completion of meiosis with fertilization. Vertebrate mos maintains the metaphase II arrest of mature oocytes and prevents DNA replication between the meiotic divisions. We identified a Drosophila homolog of mos and showed it to be the mos ortholog by two additional criteria. The dmos transcripts are present in Drosophila oocytes but not embryos, and injection of dmos into Xenopus embryos blocks mitosis and elevates active MAPK levels. In Drosophila, MAPK is activated in oocytes, consistent with a role in meiosis. We generated deletions of dmos and found that, as in vertebrates, dmos is responsible for the majority of MAPK activation. Unexpectedly, the oocytes that do mature complete meiosis normally and produce fertilized embryos that develop, although there is a reduction in female fertility and loss of some oocytes by apoptosis. Therefore, Drosophila contains a mos ortholog that activates a MAPK cascade during oogenesis and is nonessential for meiosis. This could be because there are redundant pathways regulating meiosis, because residual, low levels of active MAPK are sufficient, or because active MAPK is dispensable for meiosis in Drosophila. These results highlight the complexity of meiotic regulation that evolved to ensure accurate control over the reproductive process

    Transitioning from Episodic to Sustained Care in Humanitarian Service

    Get PDF
    Background: Humanitarian missions serve populations needing care and usually provide short term interventions. Traditionally, care provided through humanitarian agencies like VOSH International has been episodic, consisting of a short-term mission placing a team in country for several days. There have been discussions that episodic care is a short term measure which impedes the systematic development of a long term solution to providing the necessary health care. The move toward sustained care is a step in the direction of improving the public health in developing countries. Method: A survey instrument was mailed to the 26 VOSH chapters in the United States and Canada. Results were tabulated and analyzed. Results: Sixteen completed surveys were returned for a response rate of 62%. In a one-year period, missions were carried out in 13 countries. There is a strong tendency toward continuity of care with 81% of respondents returning to locations of previous missions and 69% targeting the same population base. There is also a trend toward providing sustained care (such as establishment of a fixed clinical facility) with half responding affirmatively. Nineteen percent of chapters have been involved in the development or enhancement of departments, schools or colleges of optometry in the developing world. Conclusion: It is exhibited in this study that most teams return to the same areas for future missions and collaborate with other partners with different expertise to create an ongoing presence. This model provides acute care for those needing immediate attention but also enhances the local infrastructure to develop a plan for long term care of this population. This allows for the opportunity to address immediate concerns, build rapport with the community, and use that goodwill and expertise to create long term change. While episodic humanitarian missions have made a profound impact, transitioning from episodic to sustained care improves overall quality of care, expanded services and long-term impact

    A Nationally Representative Survey Assessing Restorative Sleep in US Adults

    Get PDF
    Restorative sleep is a commonly used term but a poorly defined construct. Few studies have assessed restorative sleep in nationally representative samples. We convened a panel of 7 expert physicians and researchers to evaluate and enhance available measures of restorative sleep. We then developed the revised Restorative Sleep Questionnaire (REST-Q), which comprises 9 items assessing feelings resulting from the prior sleep episode, each with 5-point Likert response scales. Finally, we assessed the prevalence of high, somewhat, and low REST-Q scores in a nationally representative sample of US adults (n= 1,055) and examined the relationship of REST-Q scores with other sleep and demographic characteristics. Pairwise correlations were performed between the REST-Q scores and other self-reported sleep measures. Weighted logistic regression analyses were conducted to compare scores on the REST-Q with demographic variables. The prevalence of higher REST-Q scores (4 or 5 on the Likert scale) was 28.1% in the nationally representative sample. REST-Q scores positively correlated with sleep quality (r=0.61) and sleep duration (r=0.32), and negatively correlated with both difficulty falling asleep (r=-0.40) and falling back asleep after waking (r=-0.41). Higher restorative sleep scores (indicating more feelings of restoration upon waking) were more common among those who were: ≥60 years of age (OR=4.20, 95%CI: 1.92-9.17); widowed (OR=2.35, 95%CI:1.01-5.42), and retired (OR=2.02, 95%CI:1.30-3.14). Higher restorative sleep scores were less frequent among those who were not working (OR=0.36, 95%CI: 0.10-1.00) and living in a household with two or more persons (OR=0.51,95%CI:0.29-0.87). Our findings suggest that the REST-Q may be useful for assessing restorative sleep

    Real-Time Dynamic Imaging of Virus Distribution In Vivo

    Get PDF
    The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR) fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection

    GLOBE Observer Data: 2016–2019

    Full text link
    This technical report summarizes the GLOBE Observer data set from 1 April 2016 to 1 December 2019. GLOBE Observer is an ongoing NASA‐sponsored international citizen science project that is part of the larger Global Learning and Observations to Benefit the Environment (GLOBE) Program, which has been in operation since 1995. GLOBE Observer has the greatest number of participants and geographic coverage of the citizen science projects in the Earth Science Division at NASA. Participants use the GLOBE Observer mobile app (launched in 2016) to collect atmospheric, hydrologic, and terrestrial observations. The app connects participants to satellite observations from Aqua, Terra, CALIPSO, GOES, Himawari, and Meteosat. Thirty‐eight thousand participants have contributed 320,000 observations worldwide, including 1,000,000 georeferenced photographs. It would take an individual more than 13 years to replicate this effort. The GLOBE Observer app has substantially increased the spatial extent and sampling density of GLOBE measurements and more than doubled the number of measurements collected through the GLOBE Program. GLOBE Observer data are publicly available (at observer.globe.gov)

    CD4 T Cell Immunity Is Critical for the Control of Simian Varicella Virus Infection in a Nonhuman Primate Model of VZV Infection

    Get PDF
    Primary infection with varicella zoster virus (VZV) results in varicella (more commonly known as chickenpox) after which VZV establishes latency in sensory ganglia. VZV can reactivate to cause herpes zoster (shingles), a debilitating disease that affects one million individuals in the US alone annually. Current vaccines against varicella (Varivax) and herpes zoster (Zostavax) are not 100% efficacious. Specifically, studies have shown that 1 dose of varivax can lead to breakthrough varicella, albeit rarely, in children and a 2-dose regimen is now recommended. Similarly, although Zostavax results in a 50% reduction in HZ cases, a significant number of recipients remain at risk. To design more efficacious vaccines, we need a better understanding of the immune response to VZV. Clinical observations suggest that T cell immunity plays a more critical role in the protection against VZV primary infection and reactivation. However, no studies to date have directly tested this hypothesis due to the scarcity of animal models that recapitulate the immune response to VZV. We have recently shown that SVV infection of rhesus macaques models the hallmarks of primary VZV infection in children. In this study, we used this model to experimentally determine the role of CD4, CD8 and B cell responses in the resolution of primary SVV infection in unvaccinated animals. Data presented in this manuscript show that while CD20 depletion leads to a significant delay and decrease in the antibody response to SVV, loss of B cells does not alter the severity of varicella or the kinetics/magnitude of the T cell response. Loss of CD8 T cells resulted in slightly higher viral loads and prolonged viremia. In contrast, CD4 depletion led to higher viral loads, prolonged viremia and disseminated varicella. CD4 depleted animals also had delayed and reduced antibody and CD8 T cell responses. These results are similar to clinical observations that children with agammaglobulinemia have uncomplicated varicella whereas children with T cell deficiencies are at increased risk of progressive varicella with significant complications. Moreover, our studies indicate that CD4 T cell responses to SVV play a more critical role than antibody or CD8 T cell responses in the control of primary SVV infection and suggest that one potential mechanism for enhancing the efficacy of VZV vaccines is by eliciting robust CD4 T cell responses

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine
    corecore