136 research outputs found

    All-sky imager observations at South Pole Station: Recent advances and future challenges

    Get PDF
    第3回極域科学シンポジウム/第36回極域宙空圏シンポジウム 11月26日(月)、27日(火) 国立極地研究所 2階ラウン

    The Ursinus Weekly, May 8, 1975

    Get PDF
    From the cluttered desk of the U.S.G.A. President • Band finishes • B.C. to A.D. • Record review: Straight shooter - Bad Company • Letters to the editor • Parents\u27 Day plea: Donations for care • Spring Parents\u27 Day events scheduled • Track team takes fourth • Lantern elects • Placement Office active for students • Award to Noar • Telethon • Night school • How to Succeed • Suds abound in Shampoo • Baseball drops two • Girls winhttps://digitalcommons.ursinus.edu/weekly/1038/thumbnail.jp

    Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010

    Get PDF
    Arrays of GPS Ionospheric Scintillation and TEC Monitors (GISTMs) are used in a comparative scintillation study focusing on quasi-conjugate pairs of GPS receivers in the Arctic and Antarctic. Intense GPS phase scintillation and rapid variations in ionospheric total electron content (TEC) that can result in cycle slips were observed at high latitudes with dual-frequency GPS receivers during the first significant geomagnetic storm of solar cycle 24 on 5–7 April 2010. The impact of a bipolar magnetic cloud of north-south (NS) type embedded in high speed solar wind from a coronal hole caused a geomagnetic storm with maximum 3-hourly Kp = 8- and hourly ring current Dst =−73 nT. The interhemispheric comparison of phase scintillation reveals similarities but also asymmetries of the ionospheric response in the northern and southern auroral zones, cusps and polar caps. In the nightside auroral oval and in the cusp/cleft sectors the phase scintillation was observed in both hemispheres at about the same times and was correlated with geomagnetic activity. The scintillation level was very similar in approximately conjugate locations in Qiqiktarjuaq (75.4° N; 23.4° E CGM lat. and lon.) and South Pole (74.1° S; 18.9° E), in Longyearbyen (75.3° N; 111.2° E) and Zhongshan (74.7° S; 96.7° E), while it was significantly higher in Cambridge Bay (77.0° N; 310.1° E) than at Mario Zucchelli (80.0° S; 307.7° E). In the polar cap, when the interplanetary magnetic field (IMF) was strongly northward, the ionization due to energetic particle precipitation was a likely cause of scintillation that was stronger at Concordia (88.8° S; 54.4° E) in the dark ionosphere than in the sunlit ionosphere over Eureka (88.1° N; 333.4° E), due to a difference in ionospheric conductivity. When the IMF tilted southward, weak or no significant scintillation was detected in the northern polar cap, while in the southern polar cap rapidly varying TEC and strong phase scintillation persisted for many hours. This interhemispheric asymmetry is explained by the difference in the location of solar terminator relative to the cusps in the Northern and Southern Hemisphere. Solar terminator was in the immediate proximity of the cusp in the Southern Hemisphere where sunlit ionospheric plasma was readily convected into the central polar cap and a long series of patches was observed. In contrast, solar terminator was far poleward of the northern cusp thus reducing the entry of sunlit plasma and formation of dense patches. This is consistent with the observed and modeled seasonal variation in occurrence of polar cap patches. The GPS scintillation and TEC data analysis is supported by data from ground-based networks of magnetometers, riometers, ionosondes, HF radars and all-sky imagers, as well as particle flux measurements by DMSP satellites

    IMF clock angle control of multifractality in ionospheric velocity fluctuations

    Get PDF
    We present an analysis of 8 years of meridional line-of-sight ionospheric plasma velocity measurements from the Halley SuperDARN radar which investigates the effect of the interplanetary magnetic field (IMF) clock angle on the scaling exponents of the first three order velocity structure functions. We only use velocity measurements made poleward of the open/closed magnetic field line boundary in the nightside ionosphere. The measured scaling exponents are consistent with multifractal Kraichnan-Iroshnikov turbulence for all clock angles but with varying intermittency that decreases to zero during purely northward IMF conditions. We thus propose that intermittency is inherited from the solar wind but also discuss other possible reasons for this relationship. Citation: Abel, G. A., M. P. Freeman, and G. Chisham (2009), IMF clock angle control of multifractality in ionospheric velocity fluctuations, Geophys. Res. Lett., 36, L19102, doi:10.1029/2009GL040336

    Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) II:inverse modeling with high latitude observations to deduce irregularity physics

    Get PDF
    Ionospheric scintillation is caused by irregularities in the ionospheric electron density. The characterization of ionospheric irregularities is important to further our understanding of the underlying physics. Our goal is to characterize the intermediate (0.1–10 km) to medium (10–100 km) scale high-latitude irregularities which are likely to produce these scintillations. In this paper, we characterize irregularities observed by Global Navigation Satellite System (GNSS) during a geomagnetically active period on 9 March 2012. For this purpose, along with the measurements, we are using the recently developed model: “Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere” (SIGMA). The model is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions and is presented in an earlier paper. We use an inverse modeling technique to derive irregularity parameters by comparing the high rate (50 Hz) GNSS observations to the modeled outputs. In this investigation, we consider experimental observations from both the northern and southern high latitudes. The results include predominance of phase scintillations compared to amplitude scintillations that imply the presence of larger-scale irregularities of sizes above the Fresnel scale at GPS frequencies, and the spectral index ranges from 2.4 to 4.2 and the RMS number density ranges from 3e11 to 2.3e12 el/m3. The best fits we obtained from our inverse method that considers only weak scattering mostly agree with the observations. Finally, we suggest some improvements in order to facilitate the possibility of accomplishing a unique solution to such inverse problems

    GPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012, part 2: interhemispheric comparison

    Get PDF
    During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time (MLT), the scintillation was observed in the ionospheric cusp, the tongue of ionization fragmented into patches, sun-aligned arcs in the polar cap, and nightside auroral oval and subauroral latitudes. Complementing a companion paper (Prikryl et al., 2015a) that focuses on the high latitude ionospheric response to variable solar wind in the North American sector, interhemispheric comparison reveals commonalities as well as differences and asymmetries between the northern and southern high latitudes, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are caused by the dawn–dusk component of the interplanetary magnetic field controlling the MLT of the cusp entry of the storm enhanced density plasma into the polar cap and the orientation relative to the noon–midnight meridian of the tongue of ionization
    corecore