36 research outputs found

    A C0(_2) laser lattice experiment for cold atoms

    Get PDF
    This thesis presents work on a laser cooling experiment designed for trapping Rb atoms in a CO(_2) laser optical trap. Some emphasis is placed on experimental features designed to allow the future implementation of a neutral atom quantum computation scheme. The experiment was built from scratch and includes the development of stable and reliable lasers for laser cooling and the construction of a double-chamber ultra-high vacuum system. The construction of a magneto-optical trap and optical molasses are discussed and results presented. The search for a signature of atoms trapped in the CO(_2) laser optical trap is described but so far no such signature has been observed. Possible reasons for this difficulty are presented Numerical modeling of the optical potential expected from the CO(_2) laser lattice has been performed and the expected experimental parameters of trap depth and oscillation frequency deduced from them

    Polarization spectroscopy of an excited state transition.

    Get PDF
    We demonstrate polarization spectroscopy of an excited state transition in room-temperature cesium vapor. An anisotropy induced by a circularly polarized pump beam on the D2 transition is observed using a weak probe on the 6P3/2→7S1/2 transition. At high pump power, a subfeature due to Autler-Townes splitting is observed that theoretical modeling shows is enhanced by Doppler averaging. Polarization spectroscopy provides a simple modulation–free signal suitable for laser frequency stabilization to excited state transitions

    A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour

    Get PDF
    There are few demonstrated examples of phase transitions that may be driven directly by terahertz frequency electric fields, and those that are known require field strengths exceeding 1MV cm−1. Here we report a non-equilibrium phase transition driven by a weak (â‰Ș1 V cm−1), continuous-wave terahertz electric field. The system consists of room temperature caesium vapour under continuous optical excitation to a high-lying Rydberg state, which is resonantly coupled to a nearby level by the terahertz electric field. We use a simple model to understand the underlying physical behaviour, and we demonstrate two protocols to exploit the phase transition as a narrowband terahertz detector: the first with a fast (20 ÎŒs) non-linear response to nano-Watts of incident radiation, and the second with a linearised response and effective noise equivalent power ≀1 pWHz−1/2. The work opens the door to a class of terahertz devices controlled with low-field intensities and operating in a room temperature environment

    Single-photon stored-light Ramsey interferometry using Rydberg polaritons

    Get PDF
    We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of 10×1×1”m3. The photon is subject to a Ramsey sequence, i.e., “split” into a superposition of two paths. After a delay of up to 450 ns, the two paths are recombined to give an output dependent on their relative phase. The superposition time of 450 ns is equivalent to a free-space propagation distance of 135 m. We show that the interferometer fringes are sensitive to external fields and suggest that stored-light interferometry could be useful for localized sensing applications

    Terahertz electrometry via infrared spectroscopy of atomic vapor

    Get PDF
    In recent years, the characterisation of radiation falling within the so-called ‘terahertz (THz) gap’ has become an ever more prominent issue due to the increasing use of THz systems in applications such as nondestructive testing, security screening, telecommunications, and medical diagnostics. THz detection technologies have advanced rapidly, yet traceable calibration of THz radiation remains challenging. In this paper, we demonstrate a system of electrometry in which a THz signal can be characterized using laser spectroscopy of highly excited (Rydberg) atomic states. We report on proof-of-principle measurements that reveal a minimum detectable THz electric field amplitude of 1.070.06 V/m at 1.06 THz (3 ms detection), corresponding to a THz power at the atomic cell of approximately 3.4 nW. Due to the relative simplicity and cryogen-free nature of this system, it has the potential to provide a route to a SI traceable ‘atomic candle’ for THz calibration across the terahertz frequency range, and provide an alternative to calorimetric methods
    corecore