17 research outputs found
Human Monocytotropic Ehrlichiosis, Missouri
To determine the incidence, clinical and laboratory characteristics, and utility of molecular diagnosis of human monocytotropic ehrlichiosis (HME) in the primary care setting, we conducted a prospective study in an outpatient primary care clinic in Cape Girardeau, Missouri. One hundred and two patients with a history of fever for 3 days (>37.7°C), tick bite or exposure, and no other infectious disease diagnosis were enrolled between March 1997 and December 1999. HME was diagnosed in 29 patients by indirect immunofluorescent antibody assay and polymerase chain reaction (PCR). Clinical and laboratory manifestations included fever (100%), headache (72%), myalgia or arthralgia (69%), chills (45%), weakness (38%), nausea (38%), leukopenia (60%), thrombocytopenia (56%), and elevated aspartate aminotransferase level (52%). Hospitalization occurred in 41% of case-patients. PCR sensitivity was 56%; specificity, 100%. HME is a prevalent, potentially severe disease in southeastern Missouri that often requires hospitalization. Because clinical presentation of HME is nonspecific, PCR is useful in the diagnosis of acute HME
Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial.
BACKGROUND: The 2014 Zaire Ebola virus disease epidemic accelerated vaccine development for the virus. We aimed to assess the safety, reactogenicity, and immunogenicity of one dose of monovalent, recombinant, chimpanzee adenovirus type-3 vectored Zaire Ebola glycoprotein vaccine (ChAd3-EBO-Z) in adults. METHODS: This phase 2, randomised, observer-blind, controlled trial was done in study centres in Cameroon, Mali, Nigeria, and Senegal. Healthy adults (≥18 years) were randomly assigned with a web-based system (1:1; minimisation procedure accounting for age, gender, centre) to receive ChAd3-EBO-Z (day 0), or saline placebo (day 0) and ChAd3-EBO-Z (month 6). The study was observer-blind until planned interim day 30 analysis, single-blind until month 6, and open-label after month 6 vaccination. Primary outcomes assessed in the total vaccinated cohort, which comprised all participants with at least one study dose administration documented, were serious adverse events (up to study end, month 12); and for a subcohort were solicited local or general adverse events (7 days post-vaccination), unsolicited adverse events (30 days post-vaccination), haematological or biochemical abnormalities, and clinical symptoms of thrombocytopenia (day 0-6). Secondary endpoints (subcohort; per-protocol cohort) evaluated anti-glycoprotein Ebola virus antibody titres (ELISA) pre-vaccination and 30 days post-vaccination. This study is registered with ClinicalTrials.gov, NCT02485301. FINDINGS: Between July 22, 2015, and Dec 10, 2015, 3030 adults were randomly assigned; 3013 were included in the total vaccinated cohort (1509 [50·1%] in the ChAd3-EBO-Z group and 1504 [49·9%] in the placebo/ChAd3-EBO-Z group), 17 were excluded because no vaccine was administered. The most common solicited injection site symptom was pain (356 [48%] of 748 in the ChAd3-EBO-Z group vs 57 [8%] of 751 in the placebo/ChAd3-EBO-Z group); the most common solicited general adverse event was headache (345 [46%] in the ChAd3-EBO-Z group vs 136 [18%] in the placebo/ChAd3-EBO-Z group). Unsolicited adverse events were reported by 123 (16%) of 749 in the ChAd3-EBO-Z group and 119 (16%) of 751 in the placebo/ChAd3-EBO-Z group. Serious adverse events were reported for 11 (1%) of 1509 adults in the ChAd3-EBO-Z group, and 18 (1%) of 1504 in the placebo/ChAd3-EBO-Z group; none were considered vaccination-related. No clinically meaningful thrombocytopenia was reported. At day 30, anti-glycoprotein Ebola virus antibody geometric mean concentration was 900 (95% CI 824-983) in the ChAd3-EBO-Z group. There were no treatment-related deaths. INTERPRETATION: ChAd3-EBO-Z was immunogenic and well tolerated in adults. Our findings provide a strong basis for future development steps, which should concentrate on multivalent approaches (including Sudan and Marburg strains). Additionally, prime-boost approaches should be a focus with a ChAd3-based vaccine for priming and boosted by a modified vaccinia Ankara-based vaccine. FUNDING: EU's Horizon 2020 research and innovation programme and GlaxoSmithKline Biologicals SA
Detection of West Nile Virus (WNV)-Specific Immunoglobulin M in a Reference Laboratory Setting during the 2002 WNV Season in the United States
Between 1 June and 31 December 2002, 30,677 serum samples and 4,554 cerebrospinal fluid (CSF) samples were tested for West Nile virus (WNV)-specific immunoglobulin M (IgM) by an in-house enzyme-linked immunosorbent assay (ELISA); 1,481 serum samples (4.8%) and 345 CSF samples (7.6%) were positive for WNV IgM. Positive samples were forwarded to public health service laboratories (PHSLs) for further testing. PHSLs supplied results from their WNV IgM ELISAs for 654 samples; 633 (97%) were positive. PHSLs supplied WNV plaque reduction neutralization test results for 128 samples; 123 (96%) were positive. WNV IgM seroconversion and seroreversion trends were evaluated for 749 patients who each provided two serum samples that were tested during the study period. Of 574 patients whose first serum sample was IgM negative, 41 (7%) seroconverted (the second serum sample was IgM positive); of 175 patients whose first serum sample was IgM positive, 22 (13%) seroreverted (the second serum sample was IgM negative). The seroreversion rate was directly proportional to the time between serum sample collection; whereas only 1% of patients whose sera were collected <20 days apart showed seroreversion, 54% of patients whose sera were collected >60 days apart showed seroreversion. Conversion and reversion trends for CSF were evaluated for 68 patients. Of 54 patients whose first CSF specimen was IgM negative, 9 (17%) converted; none of 14 patients whose first CSF specimen was IgM positive reverted. Concomitant detection of WNV IgM in serum and CSF was assessed for 1,188 patients for whom paired serum and CSF specimens were available; for all 130 patients for whom IgM was detectable in CSF, IgM was also detectable in serum. These findings show that an in-house WNV IgM ELISA accurately identifies patients with WNV infection, document WNV IgM conversion and reversion trends, and demonstrate that WNV IgM detection in CSF is accompanied by WNV IgM detection in serum
Efficiency of Reconstitution of Immunoglobulin G from Blood Specimens Dried on Filter Paper and Utility in Herpes Simplex Virus Type-Specific Serology Screening
The performance of studies using sera from remote locations is greatly facilitated if whole-blood samples dried on filter paper are shown to be compatible with the serologic assay being employed. Since dried blood samples do not require immediate refrigeration, occupy little space, and are easily transported, they may be used for evaluating the seroprevalence of herpes simplex virus type 1 (HSV-1) and HSV-2 in geographic locations where laboratory resources are limited. We evaluated the utility of dried blood samples for the detection of type-specific HSV antibodies. The efficiency of using immunoglobulin G (IgG) eluted from dried blood samples was found to be consistent with measurement of IgG concentrations in most corresponding serum samples. The ratio of the mean IgG concentration for all dried blood samples to the mean IgG concentration for the corresponding sera was 1:29. When the 1:29 ratio was applied to each of the 22 pairs of samples, there was a deviation of less than 15% between concentrations in the dried blood sample and in the corresponding serum sample in 19 of the pairs. No positive or negative bias was detected for the IgG eluted from dried blood. The presence of HSV-1 and HSV-2 antibodies was determined in the paired dried blood and serum samples, and no differences in the HSV serostatuses were detected for 43 of the 44 pairs. One pair's serostatus varied, with the serum sample being weakly positive for HSV-1 and the dried blood sample results being equivocal. The detection of HSV antibodies was generally consistent for dried blood samples stored frozen for over 1 year or at room temperature for 30 days, although decreased reactivities were found in a few samples
Utility of the Focus Technologies West Nile Virus Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assay for Testing Cerebrospinal Fluid
Focus Technologies has developed an immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) kit that utilizes recombinant West Nile virus (WNV) antigens to detect WNV IgM in serum. We evaluate here the utility of the kit for detecting WNV IgM in cerebrospinal fluid (CSF). The sensitivity was evaluated by using 52 CSF specimens from the 2002 WNV season that were positive in both the Public Health Service Laboratories WNV IgM ELISA and an in-house WNV IgM ELISA with native WNV antigen. The specificity was evaluated with two groups of specimens: (i) 73 CSF specimens submitted for in-house WNV IgM ELISA testing from February through April 2003 and yielding a negative WNV IgM result and (ii) 60 CSF specimens determined to be positive for another virus by PCR testing. Using these 185 CSF specimens at a screening dilution of 1:2, the kit was determined to be 100% sensitive and 100% specific. Endpoint titers were determined for 20 IgM-positive CSF specimens by testing serial twofold dilutions and ranged from 1:8 to 1:512. Index values (specimen absorbance value/calibrator absorbance value) for the screening dilution (1:2) showed no correlation with IgM titers, whereas index values for higher dilutions showed significant correlation with IgM titers. CSF screening dilutions of greater than 1:2 are not recommended, however, due to the risk of obtaining false-negative results. These findings show that the Focus Technologies WNV IgM capture ELISA, when utilized as recommended, offers accurate qualitative detection of WNV IgM in CSF specimens
Performance of a Commercial Immunoglobulin M Antibody Capture Assay Using Analyte-Specific Reagents To Screen for Interfering Factors during a West Nile Virus Epidemic Season in Nebraska
In 2003, the Nebraska Public Health Laboratory tested more than 10,371 serum and 516 cerebral spinal fluid specimens. Results showed that without performing the interfering factors screen for specimens in the low positive index value range of >1.1 to ≤3.5, a false positivity rate of 6.5% would have been realized
Serologic Evaluation of Patients from Missouri with Erythema Migrans-Like Skin Lesions with the C(6) Lyme Test
Southern tick-associated rash illness (STARI), also known as Masters disease, affects people predominantly in the Southeast and South Central United States. These patients exhibit skin lesions that resemble erythema migrans (EM), the characteristic skin lesion in early Lyme disease. The etiology of STARI remains unknown, and no serologic test is available to aid in its diagnosis. The C(6) Lyme enzyme-linked immunosorbent assay was used to evaluate coded serum specimens from patients with STARI at two laboratory sites. The specimens tested at one site consisted of acute- and convalescent-phase samples that were obtained from nine STARI patients from Missouri and from one patient with documented Borrelia lonestari infection who acquired this infection in either North Carolina or Maryland. All of these samples were C(6) negative. Seventy acute- or convalescent-phase specimens from 63 STARI patients from Missouri were C(6) tested at the second site. All but one of these STARI specimens were also negative. In contrast, of nine acute- and nine convalescent-phase serum specimens obtained from culture-confirmed Lyme disease patients with EM from New York state, seven were C(6) positive at the acute stage, and eight were positive at convalescence. The C(6) test is negative in patients with STARI, providing further evidence that B. burgdorferi is not the etiologic agent of this disease
Performance of Immunoglobulin G (IgG) and IgM Enzyme-Linked Immunosorbent Assays Using a West Nile Virus Recombinant Antigen (preM/E) for Detection of West Nile Virus- and Other Flavivirus-Specific Antibodies
Focus Technologies developed an indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a mu-capture IgM ELISA for the detection of West Nile virus (WNV)-specific antibodies based on a WNV preM/E protein recombinant antigen. Normal and disease state serum panels were used to assess the performance characteristics of the two WNV ELISA kits. Totals of 807 and 1,423 sera were used to assess the IgG ELISA and IgM ELISA kits, respectively. The Focus Technologies IgG ELISA had a sensitivity of 97.6% and a specificity of 92.1% (excluding non-WNV flavivirus sera). The comparative method for WNV IgG may lack sensitivity in detecting IgG in early WNV infection, so the specificity of the Focus IgG ELISA may be higher than 92.1%. When sera from patients either infected with or vaccinated against other flaviviruses were tested on the WNV IgG assay, 35% of the sera reacted as positive for WNV IgG. Yellow fever and Japanese encephalitis vaccinees were less reactive in the IgG ELISA than St. Louis and dengue fever patients. The Focus Technologies IgM ELISA had a sensitivity and a specificity of 99.3% (excluding the non-WNV flavivirus sera). The overall cross-reactivity for the IgM ELISA to flavivirus sera was 12%, with 31% of St. Louis encephalitis patients found to be WNV IgM positive and no yellow fever vaccinees found to be WNV IgM positive. In a selected population of 706 sera, 15 false-positive WNV IgM sera were identified. The use of a background subtraction method for the IgM ELISA eliminated all 15 false-positive results, giving a specificity of 100% for the Focus IgM ELISA