48 research outputs found

    Factors influencing age of common allergen introduction in early childhood

    Get PDF
    ObjectivesWe evaluated factors influencing the timing of allergen introduction in the U.S., including updated peanut introduction guidelines.Study designThe Gastrointestinal Microbiome and Allergic Proctocolitis (GMAP) study is a prospective observational cohort in suburban Massachusetts. Infants' caregivers enrolled between 2014 and 2017, and they reported when they introduced common allergens to their child. Multivariable linear and survival regression analyses were used to examine factors influencing time of introduction of allergens.ResultsBy 9 months, children old enough to be potentially affected by NIAID's 2017 peanut introduction guidelines were more often introduced to peanut than children enrolled well before guidelines publication [54% vs. 42%, OR: 1.63, CI: (1.03, 2.57), P = 0.03]. At any given time, Black children were 73% [HR: 0.27, CI: (0.11, 0.69), P = 0.006] less likely to be introduced to peanut as early as White children. Asian children were, respectively, 36% [HR: 0.64, CI: (0.47, 0.86), P = 0.003] and 26% [HR: 0.74, CI: (0.55, 0.97), P = 0.03] less likely to be introduced to peanut and egg as early as White children. A first child was 27% [HR: 1.27, CI: (1.04, 1.56), P = 0.02] more likely to have been introduced to peanut earlier than a non-first child. There was no association between age of introduction and sex, gestational age, family history of food allergy, or other allergic comorbidities.ConclusionUpdated introduction guidelines, race, and birth order all influenced earlier introduction of peanut. Further studies to evaluate current practices for allergen introduction with a focus on potential disparities are needed

    Peanut oral immunotherapy transiently expands circulating Ara h 2–specific B cells with a homologous repertoire in unrelated subjects

    Get PDF
    Background Peanut oral immunotherapy (PNOIT) induces persistent tolerance to peanut in a subset of patients and induces specific antibodies that might play a role in clinical protection. However, the contribution of induced antibody clones to clinical tolerance in PNOIT is unknown. Objective We hypothesized that PNOIT induces a clonal, allergen-specific B-cell response that could serve as a surrogate for clinical outcomes. Methods We used a fluorescent Ara h 2 multimer for affinity selection of Ara h 2–specific B cells and subsequent single-cell immunoglobulin amplification. The diversity of related clones was evaluated by means of next-generation sequencing of immunoglobulin heavy chains from circulating memory B cells with 2x250 paired-end sequencing on the Illumina MiSeq platform. Results Expression of class-switched antibodies from Ara h 2–positive cells confirms enrichment for Ara h 2 specificity. PNOIT induces an early and transient expansion of circulating Ara h 2–specific memory B cells that peaks at week 7. Ara h 2–specific sequences from memory cells have rates of nonsilent mutations consistent with affinity maturation. The repertoire of Ara h 2–specific antibodies is oligoclonal. Next-generation sequencing–based repertoire analysis of circulating memory B cells reveals evidence for convergent selection of related sequences in 3 unrelated subjects, suggesting the presence of similar Ara h 2–specific B-cell clones. Conclusions Using a novel affinity selection approach to identify antigen-specific B cells, we demonstrate that the early PNOIT-induced Ara h 2–specific B-cell receptor repertoire is oligoclonal and somatically hypermutated and shares similar clonal groups among unrelated subjects consistent with convergent selection. Key words Immunotherapy; antigen-specific B cells; peanut allergy; food allergy; antibody repertoire Abbreviations used APC, Allophycocyanin; BCR, B-cell receptor; CDR, Complementarity-determining region; NGS, Next-generation sequencing; OIT, Oral immunotherapy; PNOIT, Peanut oral immunotherapyNational Institute of Allergy and Infectious Diseases (U.S.) (NIAID U19 AI087881)National Institute of Allergy and Infectious Diseases (U.S.) (NIAID U19 AI095261)United States. National Institutes of Health (1S10RR023440-01A1)National Institute of Allergy and Infectious Diseases (U.S.) (NIAID F32 AI104182)United States. National Institutes of Health (UL1 TR001102

    Standardization and performance evaluation of mononuclear cell cytokine secretion assays in a multicenter study

    Get PDF
    BACKGROUND: Cryopreservation of peripheral blood mononuclear cells has been used to preserve and standardize immunologic measurements for multicenter studies, however, effects of cryopreservation on cytokine responses are incompletely understood. In designing immunologic studies for a new multicenter birth cohort study of childhood asthma, we performed a series of experiments to determine the effects of two different methods of cryopreservation on the cytokine responses of cord and peripheral blood mononuclear cells. RESULTS: Paired samples of PBMC were processed freshly, or after cryopreservation in a Nalgene container (NC) or a controlled-rate freezer (CRF). Although there were some differences between the methods, cryopreservation inhibited PHA-induced IL-10 secretion and Der f 1-induced IL-2 secretion, and augmented PHA-induced IL-2 secretion and spontaneous secretion of TNF-α. In separate experiments, NC cryopreservation inhibited secretion of several cytokines (IL-13, IL-10, IFN-γ, TNF-α) by PHA-stimulated cord blood mononuclear cells. With the exception of PHA-induced IL-13, results from fresh and cryopreserved cord blood samples were not significantly correlated. Finally, in reproducibility studies involving processing of identical cell samples in up to 4 separate laboratories, variances in cytokine responses of fresh cells stimulated at separate sites did not exceed those in cryopreserved cells stimulated at a central site. CONCLUSION: Collectively, these studies indicate that cryopreservation can affect mononuclear cell cytokine response profiles, and that IL-10 secretion and antigen-induced responses may be especially vulnerable. These studies also demonstrate that mononuclear cell responses can be standardized for performance in a small number of laboratories for multicenter studies, and underscore the importance of measuring reproducibility and of testing whether cryopreservation techniques alter specific immunologic outcomes

    Peanut Allergen Threshold Study (PATS): Novel single-dose oral food challenge study to validate eliciting doses in children with peanut allergy

    Get PDF
    Background: Eliciting doses (EDs) of allergenic foods can be defined by the distribution of threshold doses for subjects within a specific population. The ED05 is the dose that elicits a reaction in 5% of allergic subjects. The predicted ED05 for peanut is 1.5 mg of peanut protein (6 mg of whole peanut). Objective: We sought to validate the predicted peanut ED05 (1.5 mg) with a novel single-dose challenge. Methods: Consecutive eligible children with peanut allergy in 3 centers were prospectively invited to participate, irrespective of previous reaction severity. Predetermined criteria for objective reactions were used to identify ED05 single-dose reactors. Results: Five hundred eighteen children (mean age, 6.8 years) were eligible. No significant demographic or clinical differences were identified between 381 (74%) participants and 137 (26%) nonparticipants or between subjects recruited at each center. Three hundred seventy-eight children (206 male) completed the study. Almost half the group reported ignoring precautionary allergen labeling. Two hundred forty-five (65%) children experienced no reaction to the single dose of peanut. Sixty-seven (18%) children reported a subjective reaction without objective findings. Fifty-eight (15%) children experienced signs of a mild and transient nature that did not meet the predetermined criteria. Only 8 (2.1%; 95% CI, 0.6%-3.4%) subjects met the predetermined criteria for an objective and likely related event. No child experienced more than a mild reaction, 4 of the 8 received oral antihistamines only, and none received epinephrine. Food allergy–related quality of life improved from baseline to 1 month after challenge regardless of outcome (η2 = 0.2, P < .0001). Peanut skin prick test responses and peanut- and Ara h 2–specific IgE levels were not associated with objective reactivity to peanut ED05. Conclusion: A single administration of 1.5 mg of peanut protein elicited objective reactions in fewer than the predicted 5% of patients with peanut allergy. The novel single-dose oral food challenge appears clinically safe and patient acceptable, regardless of the outcome. It identifies the most highly dose-sensitive population with food allergy not otherwise identifiable by using routinely available peanut skin prick test responses or specific IgE levels, but this single-dose approach has not yet been validated for risk assessment of individual patients

    Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen

    Get PDF
    Allergies are a result of allergen proteins cross-linking allergen-specific IgE (sIgE) on the surface of mast cells and basophils. The diversity and complexity of allergen epitopes, and high-affinity of the sIgE-allergen interaction have impaired the development of allergen-specific inhibitors of allergic responses. This study presents a design of food allergen-specific sIgE inhibitors named covalent heterobivalent inhibitors (cHBIs) that selectively form covalent bonds to only sIgEs, thereby permanently inhibiting them. Using screening reagents termed nanoallergens, we identified two immunodominant epitopes in peanuts that were common in a population of 16 allergic patients. Two cHBIs designed to inhibit only these two epitopes completely abrogated the allergic response in 14 of the 16 patients in an in vitro assay and inhibited basophil activation in an allergic patient ex vivo analysis. The efficacy of the cHBI design has valuable clinical implications for many allergen-specific responses and more broadly for any antibody-based disease

    SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children

    Get PDF
    Publisher Copyright: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY)Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 μg) or adult (100 μg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-μg dose but more variable immunity at a 50-μg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-μg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-μg doses in children result in highly preserved omicron-specific functional humoral immunity.publishersversionPeer reviewe

    Clinical efficacy and immune regulation with peanut oral immunotherapy

    Get PDF
    Background Oral immunotherapy (OIT) has been thought to induce clinical desensitization to allergenic foods, but trials coupling the clinical response and immunologic effects of peanut OIT have not been reported. Objective The study objective was to investigate the clinical efficacy and immunologic changes associated with OIT. Methods Children with peanut allergy underwent an OIT protocol including initial day escalation, buildup, and maintenance phases, and then oral food challenge. Clinical response and immunologic changes were evaluated. Results Of 29 subjects who completed the protocol, 27 ingested 3.9 g peanut protein during food challenge. Most symptoms noted during OIT resolved spontaneously or with antihistamines. By 6 months, titrated skin prick tests and activation of basophils significantly declined. Peanut-specific IgE decreased by 12 to 18 months, whereas IgG4 increased significantly. Serum factors inhibited IgE–peanut complex formation in an IgE-facilitated allergen binding assay. Secretion of IL-10, IL-5, IFN-γ, and TNF-α from PBMCs increased over a period of 6 to 12 months. Peanut-specific forkhead box protein 3 T cells increased until 12 months and decreased thereafter. In addition, T-cell microarrays showed downregulation of genes in apoptotic pathways. Conclusion Oral immunotherapy induces clinical desensitization to peanut, with significant longer-term humoral and cellular changes. Microarray data suggest a novel role for apoptosis in OIT

    Oral Immunotherapy for Treatment of Egg Allergy in Children

    Get PDF
    For egg allergy, dietary avoidance is the only currently approved treatment. We evaluated oral immunotherapy using egg-white powder for the treatment of children with egg allergy

    The Urban Environment and Childhood Asthma (URECA) birth cohort study: design, methods, and study population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence and morbidity of wheezing illnesses and childhood asthma is especially high in poor urban areas. This paper describes the study design, methods, and population of the Urban Environment and Childhood Asthma (URECA) study, which was established to investigate the immunologic causes of asthma among inner-city children.</p> <p>Methods and Results</p> <p>URECA is an observational prospective study that enrolled pregnant women in central urban areas of Baltimore, Boston, New York City, and St. Louis and is following their offspring from birth through age 7 years. The birth cohort consists of 560 inner-city children who have at least one parent with an allergic disease or asthma, and all families live in areas in which at least 20% of the population has incomes below the poverty line. In addition, 49 inner-city children with no parental history of allergies or asthma were enrolled. The primary hypothesis is that specific urban exposures in early life promote a unique pattern of immune development (impaired antiviral and increased Th2 responses) that increases the risk of recurrent wheezing and allergic sensitization in early childhood, and of asthma by age 7 years. To track immune development, cytokine responses of blood mononuclear cells stimulated <it>ex vivo </it>are measured at birth and then annually. Environmental assessments include allergen and endotoxin levels in house dust, pre- and postnatal maternal stress, and indoor air nicotine and nitrogen dioxide. Nasal mucous samples are collected from the children during respiratory illnesses and analyzed for respiratory viruses. The complex interactions between environmental exposures and immune development will be assessed with respect to recurrent wheeze at age 3 years and asthma at age 7 years.</p> <p>Conclusion</p> <p>The overall goal of the URECA study is to develop a better understanding of how specific urban exposures affect immune development to promote wheezing illnesses and asthma.</p
    corecore