122 research outputs found

    Stereochemistry of Polypeptide Conformation in Coarse Grained Analysis

    Full text link
    The conformations available to polypeptides are determined by the interatomic forces acting on the peptide units, whereby backbone torsion angles are restricted as described by the Ramachandran plot. Although typical proteins are composed predominantly from {\alpha}-helices and {\beta}-sheets, they nevertheless adopt diverse tertiary structure, each folded as dictated by its unique amino-acid sequence. Despite such uniqueness, however, the functioning of many proteins involves changes between quite different conformations. The study of large-scale conformational changes, particularly in large systems, is facilitated by a coarse-grained representation such as provided by virtually bonded C{\alpha} atoms. We have developed a virtual atom molecular mechanics (VAMM) force field to describe conformational dynamics in proteins and a VAMM-based algorithm for computing conformational transition pathways. Here we describe the stereochemical analysis of proteins in this coarse-grained representation, comparing the relevant plots in coarse-grained conformational space to the corresponding Ramachandran plots, having contoured each at levels determined statistically from residues in a large database. The distributions shown for an all-{\alpha} protein, two all-{\beta} proteins and one {\alpha}+{\beta} protein serve to relate the coarse-grained distributions to the familiar Ramachandran plot.Comment: 12 pages, 3 figures, Postprint of book chapter submitted to the Biomolecular Forms and Functions, M. Bansal and N. Srinivasan, Eds. copyright (2013) [copyright World Scientific Publishing Company

    Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1

    Get PDF
    SummaryClassic Hsp70 chaperones assist in diverse processes of protein folding and translocation, and Hsp110s had seemed by sequence to be distant relatives within an Hsp70 superfamily. The 2.4 Ã… resolution structure of Sse1 with ATP shows that Hsp110s are indeed Hsp70 relatives, and it provides insight into allosteric coupling between sites for ATP and polypeptide-substrate binding in Hsp70s. Subdomain structures are similar in intact Sse1(ATP) and in the separate Hsp70 domains, but conformational dispositions are radically different. Interfaces between Sse1 domains are extensive, intimate, and conservative in sequence with Hsp70s. We propose that Sse1(ATP) may be an evolutionary vestige of the Hsp70(ATP) state, and an analysis of 64 mutant variants in Sse1 and three Hsp70 homologs supports this hypothesis. An atomic-level understanding of Hsp70 communication between ATP and substrate-binding domains follows. Requirements on Sse1 for yeast viability are in keeping with the distinct function of Hsp110s as nucleotide exchange factors

    Structural Characterization of the Boca/Mesd Maturation Factors for LDL-Receptor-Type β Propeller Domains

    Get PDF
    SummaryFolding and trafficking of low-density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, are mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD β propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation, and X-ray crystallography were used to define a conserved core composed of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold with two distinct β sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of nonspecific hydrophobic interactions that may play a role in the chaperone activity of the Boca/Mesd family

    The 2.4-A crystal structure of Scapharca dimeric hemoglobin. Cooperativity based on directly communicating hemes at a novel subunit interface.

    Get PDF
    The crystal structure of the cooperative dimeric hemoglobin from the arcid clam, Scapharca inaequivalvis, has been determined in the carbonmonoxy state. The phase problem was solved for reflections with Bragg spacings greater than 3 A using anomalous scattering from the porphyrin iron atoms measured at a single wavelength in combination with molecular averaging. The model built into this electron density map has been refined at 2.4 A resolution by means of stereochemically restrained least squares minimization to a conventional R-value of 0.156. The root mean square deviation from ideal bond lengths and angles are 0.013 A and 1.7 °, respectively. In addition to the 2336 hemoglobin atoms, 214 water molecules have been incorporated into the model. This structure reveals the details of an assemblage of two identical myoglobin-like subunits that is radically different from vertebrate hemoglobins. The subunit interface is formed by direct apposition of the E and F helices, whereas these surfaces are external in vertebrate hemoglobins. The interface has both hydrophobic and hydrophilic character. Two symmetrically related hydrophobic regions are formed between subunits. Six residues are involved in each of these regions that pack tightly enough to exclude water but have only a few atoms in close van der Waals contact. A number of ordered water molecules line the interface and form bridging hydrogen bonds between subunits. Four intersubunit ionic interactions are formed, two of which involve negatively charged propionate groups of the porphyrin. In contrast to cooperative vertebrate hemoglobins, a hydrogen bond network provides a direct route for communication between the two heme groups

    Raman spectroscopic analysis of the secondary structure in Panulirus interruptus hemocyanin

    Get PDF
    AbstractThe secondary structure content of Panulirus interruptus hemocyanin crystals is estimated to be 29±5% helix and 42±4% ß-strand. These estimates are obtained from an analysis of the Raman amide I spectrum. This report constitutes a test of this method of analyzing Raman spectra since the X-ray structure of P. interruptus, which is unknown to us, is under intensive study. Also, the amide I spectrum of P. interruptus in solution, at a somewhat higher pH, is significantly different from the spectrum of crystals which indicates that the secondary structure content may be different in the solution sample

    Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor

    Get PDF
    G-protein-coupled receptors (GPCRs) respond to external stimuli by activating heterotrimeric G proteins inside the cell. There is increasing evidence that many GPCRs exist as dimers or higher oligomers, but the biochemical nature of such dimers and what roles they have, if any, in signal transduction remains unclear. We conducted a comprehensive study of dimerization of the 5HT2c serotonin receptor using disulphide-trapping experiments. We found a dimer interface between transmembrane (TM) helices IV and V that is markedly sensitive to the state of receptor activation. This dimer seems to be quasisymmetrical in interfacial geometry and asymmetrical in its association with its cognate Gα protein. We also found a second interface at TM I helices, which is insensitive to the state of activation

    Structural predictions for the ligand-binding region of glycoprotein hormone receptors and the nature of hormone–receptor interactions

    Get PDF
    AbstractBackground: Glycoprotein hormones influence the development and function of the ovary, testis and thyroid by binding to specific high-affinity receptors. The extracellular domains of these receptors are members of the leucine-rich repeat (LRR) protein superfamily and are responsible for the high-affinity binding. The crystal structure of a glycoprotein hormone, namely human choriogonadotropin (hCG), is known, but neither the receptor structure, mode of hormone binding, nor mechanism for activation, have been established.Results Despite very low sequence similarity between exon-demarcated LRRs in the receptors and the LRRs of porcine ribonuclease inhibitor (RI), the secondary structures for the two repeat sets are found to be alike. Constraints on curvature and β-barrel geometry from the sequence pattern for repeated βα units suggest that the receptors contain three-dimensional structures similar to that of RI. With the RI crystal structure as a template, models were constructed for exons 2–8 of the receptors. The model for this portion of the choriogonadotropin receptor is complementary in shape and electrostatic characteristics to the surface of hCG at an identified focus of hormone–receptor interaction.Conclusion The predicted models for the structures and mode of hormone binding of the glycoprotein hormone receptors are to a large extent consistent with currently available biochemical and mutational data. Repeated sequences in β-barrel proteins are shown to have general implications for constraints on structure. Averaging techniques used here to recognize the structural motif in these receptors should also apply to other proteins with repeated sequences

    Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves

    Get PDF
    BACKGROUND: The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. METHODOLOGY/FINDINGS: The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. CONCLUSIONS: Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress

    Coordinating the impact of structural genomics on the human α-helical transmembrane proteome

    Get PDF
    Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral α-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human α-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available
    • …
    corecore