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SUMMARY chaperone (Culi and Mann, 2003; Hsieh et al., 2003). RAP binds
Folding and trafficking of low-density lipoprotein
receptor (LDLR) family members, which play essen-
tial roles in development and homeostasis, are medi-
ated by specific chaperones. The Boca/Mesd chap-
erone family specifically promotes folding and
trafficking of the YWTD b propeller-EGF domain
pair found in the ectodomain of all LDLR members.
Limited proteolysis, NMR spectroscopy, analytical
ultracentrifugation, and X-ray crystallography were
used to define a conserved core composed of
a structured domain that is preceded by a disordered
N-terminal region. High-resolution structures of the
ordered domain were determined for homologous
proteins from three metazoans. Seven independent
protomers reveal a novel ferrodoxin-like superfamily
fold with two distinct b sheet topologies. A con-
served hydrophobic surface forms a dimer interface
in each crystal, but these differ substantially at the
atomic level, indicative of nonspecific hydrophobic
interactions that may play a role in the chaperone
activity of the Boca/Mesd family.

INTRODUCTION

Molecular chaperones assist in cellular folding andmaturation of

many proteins. The relevant folding partners in many instances

are quite promiscuous, with activity toward many substrate

proteins. Such chaperones include the ubiquitous Hsp70 chap-

erones and the Hsp60/TriC chaperonins. Other chaperones have

a more restricted clientele, such as Hsp90 involvement in the

maturation of protein kinases and nuclear hormone receptors

(Hartl and Hayer-Hartl, 2002; Anelli and Sitia, 2008). In yet other

cases, private chaperones play a highly specialized role (Anelli

and Sitia, 2008). For the low-density lipoprotein receptor

(LDLR) and lipoprotein-receptor-related proteins (LRPs), at least

two private chaperones are dedicated to the folding andmatura-

tion of these multidomain proteins as they move from the endo-

plasmic reticulum (ER) for presentation at the cell surface: the

LRP-receptor-associated protein (RAP) and the Boca/Mesd
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the cysteine-rich ligand-binding modules of LDLR family

members, preventing premature association with their respec-

tive ligands. RAP escorts fully folded LDLR family members

from the ER to the Golgi, where the lower pH triggers RAP to

dissociate and recycle back to the ER via its retention signal

(Herz, 2006). Themolecular mechanism of the Boca/Mesd chap-

erone family is less clear. In Drosophila, Boca was shown to

promote maturation and surface expression of several LDLR

family members through a direct, but transient, interaction (Culi

and Mann, 2003; Culi et al., 2004).

The LDLR gene family represents a functionally diverse set of

transmembrane proteins. The seven closely related members of

this family participate in a wide range of biologically important

and often essential roles, ranging from lipid metabolism (for

LDLR itself) to embryonic development (for LRP5 and LRP6)

and formation of the neuromuscular junction (LRP4) (Kim

et al., 2008; MacDonald et al., 2009; May et al., 2005; Zhang

et al., 2008). Other family members are multifunctional: both

VLDLR (very low density lipoprotein receptor) and APOER2

(apolipoprotein E receptor 2), like LDLR, function in cholesterol

uptake but also regulate neuronal shape, migration, and

synaptic plasticity (Herz, 2009). Mutations in the genes coding

for these proteins have been associated with a wide spectrum

of diseases including familial hypercholesterolemia (for LDLR),

other less common but severe hereditary diseases such as

autosomal-dominant coronary artery disease type 2 (LRP6),

familial exudative vitreoretinopathy, and osteoporosis pseudo-

glioma (LRP5), as well as cancers (LRP5 and LRP6) (Björklund

et al., 2009; Li et al., 2004). Several members (ApoER2 and

LRP1) have also been implicated in Alzheimer’s disease (Mar-

zolo and Bu, 2009).

LDLR protein family members are characterized by the

presence of three distinct types of extracellular domains:

(1) cysteine-rich ligand-binding modules (also called comple-

ment, or LDL-A domains), (2) epidermal growth factor-like

(EGF-like) domains, and (3) YWTD b propeller repeats (named

for their highly conserved tyrosine-tryptophan-threonine-aspar-

tate sequences). The number and arrangement of domains

varies greatly among these receptors; in humans, sizes range

5-fold from the smallest LDLR (95 kDa) to the largest LRP2

(522 kDa) (Lillis et al., 2008; Marzolo and Bu, 2009). The YWTD

motifs are repeated to form a six-bladed YWTD b propeller.

Each blade of the propeller has four antiparallel b strands which
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are offset from the YWTD repeats such that the ‘‘first’’ strand of

the sixth blade is a C-terminal strand that follows the fifth blade

to complete circularization of the toroidal YWTD b propeller

domain. The YWTD b propeller is followed by an EGF-like

domain that packs against the propeller to create a continuous

hydrophobic core in the mature protein (Jeon et al., 2001).

Boca/Mesd family members are localized to the ER, where

they aid in the folding of YWTD b propeller domains. The quality

control process within the secretory pathway oversees protein

folding, heteromeric assembly, and removal of defective

proteins. Unfolded and misfolded proteins are prevented from

continuing through the secretory pathway, until they are either

correctly folded or targeted for degradation through the ERAD

pathway (Vembar and Brodsky, 2008). ER chaperone proteins

provide the most prevalent mechanism for achieving quality

control during protein translation and translocation (Anelli and

Sitia, 2008). Both general and private chaperones are localized

within the ER, often as multiprotein complexes (Meunier et al.,

2002). The promiscuous general chaperones (e.g., Hsp70 BiP)

bind a wide range of substrates through common unfolded

features, such as exposed hydrophobic peptide sequences

(Hartl and Hayer-Hartl, 2002). Private chaperones (e.g., Boca/

Mesd) are dedicated to folding one particular protein or family

of proteins, with a distinct mechanism exclusive to the

substrate(s) (Anelli and Sitia, 2008).

Proteolysis and NMR studies of murine Mesd have shown

this protein to comprise three regions (Koduri and Blacklow,

2007; Köhler et al., 2006). An NMR model (residues K104–

L177) was obtained for the structured core (Protein Data

Bank [PDB] ID code 2I9S), which is situated between two large

proteolytically labile disordered N- and C-terminal regions

(Köhler et al., 2006). N-terminal truncations of Mesd do not

exhibit chaperone activity (Koduri and Blacklow, 2007). Simi-

larly, the boca1 allele that contains a point mutation within

this N-terminal region produces a nonfunctional W49R substitu-

tion in the mature Boca chaperone (Culi and Mann, 2003).

Some confusion surrounds the function of the disordered

C-terminal region, which is absent in Boca and other inverte-

brate family members. Mesd mutants lacking this C-terminal

tail can rescue LRP6 surface expression in Mesd-deficient cells

(Koduri and Blacklow, 2007). In normal cells, an almost identical

construct is unable to promote LRP6 surface expression, yet

the tail alone binds fully folded LRP6 at the cell surface with

high affinity (Li et al., 2005, 2006b; Liu et al., 2009). Boca/

Mesd chaperones also prevent the formation of high-molec-

ular-weight intermolecular disulfide aggregates of LDLR

members within the ER (Culi and Mann, 2003; Hsieh et al.,

2003). The single cysteine residue that is present in most

Boca/Mesd orthologs appears to be unnecessary for function

(Koduri and Blacklow, 2007); thus, Boca/Mesd chaperones

are unlikely to function as redox catalysts and their molecular

mechanism remains elusive.

Here we present four high-resolution crystallographic struc-

tures of the structured domains of Boca/Mesd YWTD b propeller

(BMY) chaperones from three divergent species: Drosophila

melanogaster Boca (dmBoca), Mus musculus Mesd (mmMesd),

and Caenorhabditis elegans (ceBMY-1). NMR analysis of

dmBoca confirms that the conserved core (CC) is split into

a structured domain (SD) and an N-terminal disordered region
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of high sequence conservation. Limited proteolysis ofmmMesd,

dmBoca, and ceBMY-1 readily removed highly conserved

N-terminal regions that precede the structured domain within

the highly conserved core region. The seven independent SD

protomers from the four crystals are structurally similar, but

they deviate significantly from the monomeric NMR structure

(Köhler et al., 2006). The SD structures have a novel ferro-

doxin-like a/b fold, but there are both four-stranded and five-

stranded variants of the b sheet. Each structure is a dimer medi-

ated by a hydrophobic interface, but relative dispositions within

these dimers are variable. We suggest that these nonspecific

interactions represent a possible interaction site for chaperone

activity. Analytical ultracentrifugation shows that the disordered

N-terminal region disrupts the structured domain dimer, sug-

gesting a possible role for this region in regulating chaperone

activity.
RESULTS

Structural Dissection of Boca/Mesd Family Proteins
In undertaking a structural analysis of Boca/Mesd proteins, we

first performed a sequence alignment of several homologous

proteins, which revealed that these all share a conserved core

of �140 residues (CC) within the mature protein (Figure 1). A

short variable N-terminal sequence precedes the CC. The

mammalian homologs have highly charged and variable

C-terminal tails, and all terminate in KDEL ER-retention signals.

To probe the structure of these maturation factors for YWTD

b propellers, we produced the full-length proteins from three

family members: M. musculus (mm) Mesd; D. melanogaster

(dm) Boca; and C. elegans (ce) BMY-1. The former two were

previously characterized as specialized chaperones, and we

identified the latter from an unnamed ORF in the C. elegans

genome (WormBase ws125) as an obvious ortholog (41% and

48% sequence identity to mmMesd and dmBoca, respectively,

in the CC portion). The full ORF was extracted from a total

C. elegans RNA extract by RT-PCR, and the cDNA matched

the predicted gene, F09E5.17. The corresponding protein is

now identified as BMY-1 (WormBase, http://www.wormbase.

org, release WS126, 07.19.2004).

We used limited proteolysis tomap the domain structure of the

mature proteins from three family members:mmMesd, dmBoca,

and ceBMY-1. Each of these proteins reveals a similar proteo-

lytic profile (see Figure S1 available online). The variable

sequences from the N and C termini of the mature protein are

removed at low protease concentrations. At higher protease

concentrations, the rapid removal of an additional �50 residues

from the N terminus generates an �10 kDa protease-resistant

fragment. This implies that the CC is composed of two regions:

a stable SD that follows a poorly ordered and proteolytically

labile N-terminal region. Thus, overall, the Boca/Mesd matura-

tion factors comprise four characteristic regions between the

N-terminal signal sequence and the KDEL ER-retention signal

(Figure 1A): a highly variable N-terminal segment, a poorly

ordered region within the CC, the protease-resistant SD, and

the highly charged variable region. For further structural charac-

terizations, we purified CC and SD proteins for each of the three

Boca/Mesd chaperones.
324–336, March 9, 2011 ª2011 Elsevier Ltd All rights reserved 325

http://www.wormbase.org
http://www.wormbase.org


A

B

Figure 1. The Domain Organization of the Boca/Mesd Family

(A) Schematic representation of the Boca/Mesd family structure. The short variable N-terminal region and the highly charged variable tail, which includes the

ER-retention signal labeled here as KDEL, are represented by small red and purple boxes, respectively. The conserved core has high sequence identity and

is divided into two regions: the disordered N-terminal region (yellow box) and the structured domain (green oval).

(B) Structure-based alignment for the Boca/Mesd chaperone family. The dmBoca (Dm), ceBMY-1 (Ce), and mmMesd (Mm) sequences for the proteins in this

work along with Boca/Mesd orthologs from human (Hs), chicken (Gg), fish (Dr), and frog (Xl). The MAFFT (Katoh and Toh, 2008) alignment was adjusted based

on our knowledge of the coordinates for the SD. Colored residues represent a 60% identity threshold between species in this alignment (Jalview) (Clamp et al.,

2004). The vertical green bar shows the predicted signal peptidase cleavage site (signalP) (Emanuelsson et al., 2007), and thus the start of the mature protein. The

secondary structural elements of dmBocaSD (form I), both four- and five-stranded b sheet conformations, are above the sequence (ESPript) (Gouet, 2003). The

colored boxes below the alignment represent the regions described (also see Figure S1).
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Structural Properties of the Boca Conserved Core
in Solution
To further test our conclusions on the domain structure of the

CC, we recorded 15N-1H TROSY NMR spectra on 15N-labeled

dmBocaCC and 15N-labeled dmBocaSD (Figure 2). Nearly all the

dispersed peaks within the CC spectra overlap those of the SD

spectra, implying that the SD includes all of the well-structured

regions of the CC. The extra �50 residues in the N-terminal

region of dmBocaCC have resonance frequencies corresponding

to those of an unstructured peptide, typified by limited disper-

sion centered at 1H resonance frequencies of �8.2 ppm. A

number of the dispersed resonances from the SD appear to be

shifted in the context of the extended N terminus of the CC,

however, suggesting that the N-terminal segment makes weak
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interactions with the structured portion. Whether those interac-

tions might involve an ordered state at low abundance or come

from diffuse contacts with a fully flexible extension is unclear.

That there are interactions is compatible with our observation

that dimer affinity is reduced for extended constructs as

compared with SD constructs (see below). The evident lack of

substantial order in this segment is consistent with its ready

removal by four different proteases with diverse sequence

recognition specificities.

Dimer Interactions in Solution
In the course of our crystallographic studies reported below, we

found evidence for SD dimerization. Consequently, we per-

formed equilibrium analytical ultracentrifugation with the native
ts reserved



Figure 2. TROSY Spectra of dmBocaCC and dmBocaSD
Two structurally distinct regions exist within the conserved core of dmBoca.

The overlay of 15N-1H TROSY NMR spectra from 15N-labeled dmBocaCC
(blue contours) and dmBocaSD (red contours) at pH 6.0, 299.5K. The dispersed

peaks of the dmBocaSD account for almost all those of dmBocaCC, whereas

the additional residues in the N-terminal region of dmBocaCC correspond to

those of an unstructured peptide. Green and yellow contours are negative

signals for the folded resonances of arginine N3 spins.

Table 1. Dimer Dissociation Constants

KD (mM)

dmBocaSD 77 ± 3.1

dmBocaCC 155 ± 4.6

ceBMY-1SD 106 ± 4.2

ceBMY-1FL 220 ± 4.4

mmMesdSD 276 ± 13.8

mmMesdFL �7000
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protein for all three structured domains and for either the corre-

sponding CC or full-length protein (Figure S2; Table 1). The SDs

all have quite similar KDs, which range from 77 ± 3 to 276 ±

14 mM. The addition of the disordered N-terminal residues in

the native dmBocaCC construct or the mature ceBMY-1 protein

weakens the SD dimer approximately 2-fold. The mature

mmMesd, which includes the long highly charged variable

C-terminal tail, is for all practical purposes monomeric. The

weakened dimer interactions for the larger native constructs

indicate that the variable tails and disordered N-terminal region

interfere with intrinsic SD dimerization propensity.
Structures of the Structured Domains from Three
Boca/Mesd Chaperones
We determined structures for the SDs from dmBoca, mmMesd,

and ceBMY-1 by X-ray crystallography (Tables 2 and 3). The SDs

in each of four crystal structures are associated as apparent

dimers. In all, seven independent protomers are contained in

the structures that we have determined. These seven SD proto-

mers are superposed in Figure 3A. Each of these proteins adopts

a compact globular fold with a topology similar to ferrodoxins.

Together, these proteins represent a novel SCOP superfamily

within the ferrodoxin-like fold (A. Murzin, personal communica-

tion). Each SD protomer has a babbab core topology, wherein

each bab has a right-handed conformation but with successive

parallel b strands interlaced in an antiparallel b sheet (Figure 3).

This places the two helices on one side of the b sheet, packed
Structure 19,
against one another in opposite orientations. In some cases,

the last b strand forms a hairpin turn to add a fifth b strand.

Structured Domain of Boca
Two distinct crystal forms of dmBocaSD were solved using

experimentally determined phases. Both crystals were

produced from a selenomethionyl (SeMet) dmBoca SD. Multi-

wavelength anomalous diffraction (MAD) at the Se K-edge was

used to determine the structure of dmBocaSD in crystal form I

(Figure 4). This crystal belongs to space group P4122, and has

two molecules per asymmetric unit. A second crystal (form II),

belonging to space group P6522, allowed an independent solu-

tion of the dmBocaSD structure by single-wavelength anomalous

diffraction (SAD) at the Se K-peak.

The P4122 (form I) structure, determined at 2.3 Å resolution,

includes ordered residues from R92 to G172 for one protomer,

whereas the other protomer has density for three fewer residues

ranging from R92 to E169. Additionally, 121 well-ordered water

molecules were also modeled. The major difference between

the two protomers is in the structure of the b sheet near the

C terminus. In protomer A, the b sheet is five stranded, and

includes a short strand, b5, which follows b4 from a type I0 hairpin
turn. In protomer B, this hairpin turn is absent and the b4 strand is

extended without interruption (Figure 3B).

The structure determined for the P6522 crystals (form II),

refined to 2.0 Å resolution, has a single protomer in the asym-

metric unit (Figure 4). This molecule, like protomer A in crystal

form I, has five b strands. A total of 84 ordered residues (K89–

G172), 3 sulfate ions, 1 sodium ion, 1 acetate ion, and 76 water

molecules weremodeled. Amethionine residue from the cleaved

thrombin site is also observed.

Structured Domain of Mesd
The crystals of mmMesdSD were hemihedrally twinned

throughout the P43 lattice, with two molecules per asymmetric

unit (Figure 4). Despite this difficulty, the mmMesdSD structure

was solved by molecular replacement (MR) using the four-

stranded protomer of dmBocaSD from crystal form I as the

searchmodel. A Bijvoet-difference map from SeMetmmMesdSD

diffraction measured at the Se K-peak showed features for both

the true selenium sites and the twin-related sites (data not

shown). The asymmetric unit contains two five-stranded

mmMesdSD protomers, which are ordered from residues K104

to Y182 and M99 to G184. A total of 163 residues and 108 water

molecules were refined to a 2.0 Å resolution. At the C terminus of

the fifth strand, residues 181 and 182 are disordered in one pro-

tomer and displaced by a crystal-packing interaction in the

other.
324–336, March 9, 2011 ª2011 Elsevier Ltd All rights reserved 327



Table 2. Crystallographic Diffraction Data

Data Set

SeMet refine

dmBocaSD (I)a
SeMet l2

dmBocaSD (I)a
SeMet l1

dmBocaSD (I)a
SeMet l3

dmBocaSD (I)a
SeMet

dmBocaSD (II)a
SeMet

ceBMY-1SD
b mmMesdSD

dmin (Å) 2.3 2.5 2.5 2.8 2.00 1.37 2.01

Beamline X25 X25 X25 X25 X4C X4C X4C

Space group P4122 P4122 P4122 P4122 P6522 P1 P43 (twinned)

Wavelength (Å) 0.9794 (peak) 0.9795 (peak) 0.9802 (edge) 0.9645 (remote) 0.9790 (peak) 0.9790 (peak) 0.9790 (native)

Number of reflections 15,757 10,635 10,653 8,709 13,036 31,382 12,634

Average redundancy 6.5 14.6 14.6 15.2 11.1 2.6 3.8

< I >/(d)c 27.9 (7.5) 42.3 (9.0) 42.5 (9.0) 32.8 (9.6) 20.6 (5.3) 24.5 (9.2) 30.8 (7.8)

Completeness (%)c 99.3 (99.3) 85.8 (47.3) 85.9 (47.1) 98.5 (95.7) 99.0 (100) 94.1 (92.3) 99.0 (96.4)

Rmerge (%)d 0.69 (0.282) 0.067 (0.282) 0.067 (0.280) 0.095 (0.313) 0.129 (0.43) 0.036 (0.087) 0.038 (0.148)

dmin, minimal Bragg spacing.
a Bijvoet mates are kept separate for scale and B factor calculations.
b Bijvoet mates are considered equivalent for scale and B factor calculations.
c Values in the outermost shell are given in parentheses.
d Rmerge = (

PjIi � < Ii >j)/P jIij, where Ii is the integrated intensity of a given reflection.

Structure
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Structured Domain of BMY-1
The SeMet ceBMY-1SD crystal belongs to space group P1 and

contains twomolecules per unit cell (Figure 4). Bijvoet-difference

maps calculated from the Se K-peak data set confirmed the Se

positions in the MR solution, for which the search model em-
Table 3. Crystallographic Refinement Statistics

Parameter SeMet dmBocaSD (I) SeM

Bragg spacings (Å) 2.288 2.002

Space group P4122 P652

Unit cell parameters a, b, c (Å) 34.106, 34.106, 311.238 62.28

a, b, g (�) 90, 90, 90 90, 9

Zaa 2 1

b strands in each protomer 1 four-stranded

1 five-stranded

1 five

Solvent content (%) 46.7 52.0

Rb 0.1892 0.190

Rfree 0.2279c 0.225

Number of reflections 15,471 12,03

Number of total atoms 1,421 784

Number of total atoms (non-hydrogen) 1,421 784

Number of protein atoms (non-hydrogen) 1,300 688

Number of heteroatoms 0 20

Number of waters 121 76

Average B factor (Å2) 26.75 23.58

Rms bond ideality (Å) 0.003 0.003

Rms angle ideality (�) 0.601 0.667

Rotamer outlierse 0.74 1.47

Ramachandran (favored/outlier) (%/%)e 99.35/0.00 98.80

PDB ID code 3OFE 3OFF
a Za, number of molecules per asymmetric unit.
b R = (kFoj � jFck)/jFoj, where Fo and Fc denote observed and calculated st
c Rfree was calculated using 5% of data excluded from refinement.
d Rfree was calculated using 10% of data excluded from refinement.
eMolProbity analysis (http://kinemage.biochem.duke.edu) (Chen et al., 201
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ployed was the five-stranded SD of dmBoca (form I). The final

structure, refined with riding hydrogen atoms to 1.3 Å resolution,

contains 90 ordered residues in one protomer (S84–G174) and

86 ordered residues (Q88–G174) in the second protomer. A total

of 235 waters and four chloride ions were also modeled. The
et dmBocaSD (II) mmMesdSD SeMet ceBMY-1SD

2.013 1.367

2 P43 P1

4, 62.284, 89.675 71.651, 71.651, 37.102 29.522, 38.148, 40.706

0, 120 90, 90, 90 63.39, 85.74, 84.69

2 2

-stranded 2 five-stranded 2 four-stranded

49.4 35.4

0 0.1474 0.1456

7d 0.1744d 0.1678c

9 12,606 31,382

1,401 3,372

1,401 1,832

1,293 1,593

0 4

108 235

31.32 (+ 2 TLS chains) 13.63

0.003 0.007

0.563 1.022

1.50% 0.00

/0.00 100.0/0.00 99.43/0.00

3OFH 3OFG

ructure factors, respectively.

0b).
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Figure 3. Similarities and Differences of the Boca/Mesd Family

Structured Domain
(A) Structural superposition of all seven Boca/Mesd family SD protomers. The

seven crystallographically determined protomers, in four different crystal

lattices, are from three divergent species: mouse (green and light green), fly

(blue, light blue, and teal), and worm (purple and light purple). All seven struc-

tures are within 0.9 Å rmsd. At the C terminus of the SD is the number of

b strands present in the b sheet, dependent on which conformation is present

in the crystal.

(B) Boca/Mesd SD topology: both the five-stranded and extended b4 confor-

mations of the b sheet are shown. The a helices (orange) and b strands (blue)

are numbered to be consistent with the NMR structure (PDB ID code 2I9S). The

five-stranded topology ends at the C5 terminus and the b4 extension (checked

blue) at the C4 terminus.

(C) Stereo picture of the Ca trace for the crystal structure of mmMesdSD, with

the same orientation and color green as (A), superimposed with the NMR

model (PDB ID code 2I9S) via the Escet-defined conformationally invariant

b sheet (Schneider, 2004), reveals the nearly 5 Å rmsd offset for the helices

in the NMR structure. Every tenth residue is presented as a sphere and

numbered. The thin gray Ca trace of the NMR model is highlighted in red for

Ca positions greater than three standard deviations from the internal rmsd of

the NMR core.

Structure
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b sheets possess an extended b4 strand conformation in both

C. elegans SD protomers. The C-terminal residues, which are

disordered in the four-stranded SD of dmBoca (form I), here

instead form a short C-terminal tail following the extended b4

strand. Each tail reaches across to the other SD within the unit

cell (Figure 4A); however, lacking defined secondary structure,

the tails trace different paths to form distinct contact patterns

with their partners. A chloride ion is bound in approximately

the same location on both protomers. One tail completely
Structure 19,
occludes this ion, whereas the other tail loops around the equiv-

alent chloride position without making any contact.

Comparison of the Crystal Structures to Prior NMR
Structures
The seven independent protomers from the four crystal struc-

tures are very similar (Table 4). Pairwise root-mean-square devi-

ations (rmsds) for 65 equivalent Ca positions (see Experimental

Procedures) among all seven protomers are all less than 0.9 Å.

The solution structure of anmmMesdSD construct as determined

by NMR (Köhler et al., 2006) has the same overall topology as for

these crystal structures. In contrast, however, the NMR structure

exhibits rmsds greater than 2.2 Å with each of the seven crystal-

lographically determined protomer structures when calculated

for the same 65 Ca atoms. The structural differences are high-

lighted by the superposition shown in Figure 3C. The program

Escet (Schneider, 2004) defines the b sheet as the most confor-

mationally invariant region between the NMR model and

mmMesdSD crystal structure. In this superposition, the b sheet

(27 Ca positions) has an rmsd of less than 1 Å, whereas the

two a helices (28 Ca positions) in the NMR model are substan-

tially displaced relative to those in the crystal structure and

have an rmsd over 4.3 Å. This suggests that, although the

short-range features of the NMR structure are well determined,

the NMR restraints fail to define fully the long-range interactions

between the helices and the sheet. The NMR model also forms

neither of the two distinct b sheet conformations found in the

crystal structures. Rather, the NMR structure has a short b4

strand similar to the b4 strand found in the five-stranded confor-

mation of SD, but it lacks b5 (Figure 3C).

A recent NMR solution structure of a full-length mmMesdFL
construct (PDB ID code 2KMI) (Chen et al., 2010a) shows major

tertiary structural differences as compared to our seven crystal-

lographically determined SDs or to the mmMesdSD NMR

structure described above. Because this new model has poor

conformational geometry and unusual biophysical properties

(Table S1), we demur and avoid detailed structural comparison.

Dimer Interactions of the Structured Domains
Each of the Boca/Mesd SD structures has its subunits arranged

into dimers. For the dmBoca structure of crystal form II, the dimer

is specified by a crystallographical diad; in the other three crys-

tals, however, the two protomers per asymmetric unit are related

by approximate diad axes. The quasi-two-fold noncrystallo-

graphic symmetry axes for these three, mmMesd, ceBMY-1,

and dmBoca (form I), differ in screw-axis parameters (Figures 4A

and 4B; Table S2). Moreover, the relationship between the

dmBoca protomers in the form I dimer is rotated �160� from

that in the form II dimer. In each case, however, the same surface

of the SD consistently provides a major contact between proto-

mers in the dimer. This surface, which includes contributions

from each of the b strands of the structured core, forms a dimer

interface in all cases. Differences among these dimers are

substantial, resulting from different interfacial contacts from

a largely overlapping set of residues. These differences are not

species dependent, however, because the two crystal forms of

dmBoca have very different arrangements.

The buried surface area (Figure 4C; Table S2) for themmMesd,

dmBoca(I), and dmBoca(II) structures ranges from 600 to 900 Å2.
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Figure 4. Properties of the Distinct Dimer Interfaces of dmBocaSD, mmMesdSD, and ceBMY-1SD
Interfaces are shown for each of the four crystal structures of the Boca/Mesd family members, one in each of the four columns, with different properties shown

in the rows.

(A) A backbone worm representation of each dimer pair from the four crystal structures, with each distinct molecular axes of symmetry from Table S2 (gray tubes)

(Hendrickson, 1979). The superposition of each noncrystallographic dimer, dmBoca(I)SD (blue),mmMesdSD (green), and ceBMY-1SD (purple), to the dmBoca(II)SD
protomer (upper, teal) further highlights the different positions of the second (lower) protomer within each dimer. The second (lower) dmBoca(II)SD protomer is light

teal to distinguish it as a crystallographically related dimer.

Structure

Conserved Core Structures in Boca/Mesd Chaperones

330 Structure 19, 324–336, March 9, 2011 ª2011 Elsevier Ltd All rights reserved



Table 4. Root-Mean-Square Deviations for Seven Crystallographically Determined SDs and mmMesd NMR Model

Rmsd (Å)

dmBocaSD
(I)A

dmBocaSD
(I)B

dmBocaSD
(II) ceBMY-1SD A ceBMY-1SD B mmMesdSD A mmMesdSD B

mmMesd

NMR (2I9S)

dmBocaSD
(I)A

0.657

(70)

0.329

(81)

0.748

(70)

0.961

(71)

0.738

(80)

0.696

(78)

1.581

(46)

dmBocaSD
(I)B

0.591 0.569

(70)

0.683

(70)

0.909

(73)

0.850

(72)

0.841

(72)

1.424

(48)

dmBocaSD
(II)

0.290 0.508 0.670

(70)

0.887

(71)

0.690

(80)

0.693

(78)

1.501

(46)

ceBMY-1SD
A

0.708 0.708 0.641 0.622

(82)

0.744

(70)

0.774

(71)

1.506

(51)

ceBMY-1SD
B

0.899 0.764 0.838 0.577 0.865

(71)

0.777

(70)

1.576

(52)

mmMesdSD

A

0.660 0.678 0.574 0.672 0.759 0.545

(79)

1.520

(50)

mmMesdSD

B

0.594 0.652 0.540 0.621 0.714 0.402 1.443

(48)

mmMesd NMR (2I9S) 2.432 2.329 2.393 2.331 2.242 2.212 2.353

Rmsds for pairwise alignments of all seven crystallographically determined SD protomers and themmMesd NMRmodel (PDB ID code 2I9S). Each pair

is superimposed such that each superimposed region contains at least three contiguous Ca positions within 2.5 Å. The upper half of the table shows

the rmsd for each pair, with the total number of Ca positions used in each optimized superimposition shown in parentheses. The rmsds for 65 core Ca

positions in all crystallographically determined SD protomers and themmMesd NMRmodel (2I9S) are shown in the lower half of the table. The 65 core

Ca positions are within 2.5 Å in all seven SDs, and each superimposed region contains more than three consecutive residues (also see Table S1).

Structure

Conserved Core Structures in Boca/Mesd Chaperones
The ceBMY-1 structure is an outlier, burying 1700 Å2 at the inter-

face. The extensive contacts made by the irregularly structured

residues in the C-terminal tails of each protomer (Figure 4A)

contribute almost half of this surface. By removing the non-b resi-

dues that follow the extended b4 strand from both ceBMY-1 pro-

tomers, we create a model for each ce SD that resembles the

four-stranded dmBoca (form I) protomer. The hydrophobic inter-

face created by the ceBMY-1 dimer in the absence of these tails

closelymatches the surface of the other three structures (Figures

4C and 4D). The 846 Å2 buried in the cemodel dimer lies directly

between the buried surface areas for the other two asymmetric

parallel dimers, 898 Å2 for dmBoca (form I) and 791 Å2 for

mmMesd.

The b sheet surface that forms the dimer interface also

contains the largest patch of conserved residues (Landau

et al., 2005) (Figure 4E). The conserved surface also includes

residues involved in the conformational change of the b sheet,

which produce either the extended b4 strand structure or the

alternative hairpin turn/b5 strand conformation. Thus, conserva-

tion within the SD includes the surface of the dimer, primarily
(B) Thewormandaxis representationsas in (A)but rotatedby90� about thehorizonta
forms an antiparallel dimer, in comparison to the parallel dimers in the other thre

(C) The molecular surface of one protomer in each dimer; relative orientations to

the largely overlapping set of residues at this interface are colored according to

made by the unstructured residues that follow the extended b4 strand. The orie

characterization of these surfaces can be found in Table S2.

(D) Hydrophobicity (Kyte and Doolittle, 1982) at each residue’s position, scaled

(E) Evolutionary conservation (Landau et al., 2005) at each residue’s position in

(F) An invariant isoleucine buried by all seven protomers in the four interfaces.

patterns found at the atomic level in each crystal interface. Black double-heade

directional arrows signify an interaction present within the dimer from one proto

in gray are not contacted in that particular interface but are shown for clarity.

Structure 19,
residues from strands b1–b3, as well as the residues that

undergo the transition between the two conformational states.

The four observed dimer interfaces share ten equivalent resi-

dues that are buried from one or the other protomer. Six of these

residues, two each from strands b1, b2, and b3, contribute from

both protomers within all four dimers. Central to all is a buried

and invariant isoleucine residue (dmBoca Ile138, ceBMY-1

Ile140, mmMesd Ile149); however, this single residue makes

different atomic contacts in all four interfaces, and it even forms

asymmetric interactions between the SD protomers in the

ceBMY-1 and mmMesd structures (Figure 4F). Each of the

conserved interfacial isoleucine residues contacts two to four

residues in the opposing protomer. The two crystal forms of

dmBoca have entirely discrete contact patterns for Ile138, but

individual contacts in both dmBoca crystal forms are replicated

in the ceBMY-1 andmmMesd structures. Other residues alterna-

tively contacted by the central isoleucine (Figure 4F) are also

either absolutely conserved (dmBoca Met95 and Phe97) or

conservatively substituted (dmBoca Tyr130 and Leu140 versus

mmMesd Phe141 and Met151; dmBoca Val132 versus
l axis. Thesuperimposedprotomersarecoloredgray forclarity. ThedmBoca(II)SD
e crystal structures.

the superposed protomers (gray worms) are maintained. The atoms buried by

(A); the light purple surface of ceBMY-1SD represents the additional contacts

ntations here are as in (B) but rotated by 180� about the vertical axis. Further

from nonpolar (red) to polar (white), in the same orientation as (C).

the same orientation as (C), with 9 being the most highly conserved position.

This representative residue is typical of the overlapping but distinct contact

d arrows indicate an interaction present in both protomers of the dimer; gray

mer to the other but that is not reciprocated. The equivalent residues names
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ceBMY-1 Ile134), and these are also involved in pairwise

contacts between one another.

DISCUSSION

Boca/Mesd family members include a conserved core, and from

our studies on the homologs from Drosophila, C. elegans, and

mouse, we characterize two structurally distinct regions within

this core. A disordered N-terminal region of high sequence

conservation precedes a structured domain, for which we

present four crystallographically determined structures. All of

these structures are very similar to one another and have essen-

tially the same fold as in a previously reported NMR structure of

the same domain from murine Mesd; however, there are distinc-

tions in conformation that likely reflect the greater accuracy of

the crystal structures. We also find that each of these proteins

dimerizes and that all of the crystal structures are of molecules

in a dimeric state. Comparisons of the crystal structures reveal

two new features of possible relevance to the mechanism of

chaperone action.

First, a small hydrophobic patch observed in the NMR solution

structure, and proposed as a possible site for intermolecular

interactions, is part of a larger conserved surface involved in

the protein-protein contacts between protomers within each

crystal lattice. Each interface is composed almost entirely of resi-

dues from the b1, b2, and b3 strands of the b sheet, but the rela-

tive orientations of the protomers differ in the four structures. The

residues from these three b strands are able to formmultiple and

distinct atomic contact patterns in the different protein homologs

and crystal forms. The small surface areas buried by the b sheets

at each SD interface are approximately equivalent, ranging from

600 to 900 Å2 in total, and close to the minimal size required for

a protein interface (Jones and Thornton, 1996). Taken together,

these observations suggest that the dimer interaction is fairly

weak, consistent with the affinities measured by analytical ultra-

centrifugation. The propensity for protein-protein interactions

through this conserved surface is, however, suggestive of the

slippery hydrophobic surfaces of some promiscuous general

chaperones (Hartl and Hayer-Hartl, 2002). Such conserved

hydrophobic surfaces in chaperone proteins usually demarcate

the substrate interaction site (Saibil, 2008). It remains unclear,

however, how this surface might participate in the private chap-

erone action of Boca/Mesd with LDLR b propellers.

Constructs containing the highly flexible and proteolytically

labile but highly conserved N-terminal region were resistant to

crystallization and weakened the dimer interaction of the struc-

tured domain. If disruption of the protein-protein interface were

caused by competitive inhibition in cis, then a second interaction

between the disordered N-terminal region and the conserved but

slippery and nonspecific hydrophobic surface of the SD must

exist. An unpublished mmMesd NMR structure (PDB ID code

2RQK) provides one plausible model for this interaction. In the

NMR ensemble, an a-helical segment from the N-terminal

region, which is connected to the SD by a large unmodeled

loop, binds the same conserved b sheet surface that is buried

at the interface of each crystal structure. The invariant trypto-

phan residue associated with the lethal boca1 allele is present

in this a helix and contacts several surface residues, including

three of the six residues buried by all seven protomers. Like
332 Structure 19, 324–336, March 9, 2011 ª2011 Elsevier Ltd All righ
the intermolecular b sheet-to-b sheet SD dimer, the presumably

intramolecular a helix-to-b sheet interaction primarily contacts

the first three b strands and not the portion of the b sheet that

undergoes conformational changes.

The second novel feature found in the crystal structures is

conformational variability in the b sheets, which appears in three

independent protomers as a four-stranded sheet and in four pro-

tomers as a five-stranded sheet. We attribute this variability to

the flexibility of residues that can form either a rare type I0

b turn (Hutchinson and Thornton, 1994) preceding the b5 strand

or an extension of the b4 strand without a b hairpin. One dmBoca

crystal structure contains both four- and five-stranded proto-

mers, indicating that this conformational change is not species

dependent. We considered the possibility that crystal packing

might have dictated the alternative conformations, and we do

see that for four of the seven protomers (Table 1), lattice interac-

tions are only consistent with one or the other alternative;

however, we also find for the five-stranded protomer in the

dmBoca(I) lattice and for both in the mmMesd lattice that

a four-stranded model can be accommodated without conflict

and without apparent compromise of lattice integrity. Thus,

although we cannot rule out lattice artifacts in all cases, it does

appear that intrinsic energetics are defining for three of the

four five-stranded protomers.

The two crystallographically determined mmMesd SDs are

five stranded, but neither the fifth-stranded nor the extended

fourth-stranded conformation is directly observed in the

mmMesd (89–184) NMR model (Köhler et al., 2006). The central

core of structured residues (104–175) in the NMR ensemble is

contained within each of the crystal structures, but each of the

crystal structures additionally contains well-ordered residues

that extend beyond this core of the NMR ensemble (Figure 3C).

The NMR ensemble, which shows significant differences from

the crystal structures in the region of variable b sheet architec-

ture, may reflect sampling of intermediate-like states in solution,

and suggests why this region has been reported to be unstruc-

tured and proteolytically labile (Koduri and Blacklow, 2007; Köh-

ler et al., 2006).

Residues that distinguish the two distinct b sheet conforma-

tions are among the most conserved in the b sheet region of

Boca/Mesd proteins. On the other hand, only a few of these resi-

dues, those from the C terminus of b4 and the turn into b5, partic-

ipate in the dimer interface. These observations suggest the

possibility of a separate function that provides evolutionary pres-

sure for this region. An almost invariant valine-threonine residue

pair (mmMesd Val174-Thr175, dmBoca Val163-Thr164,

ceBMY-1 Val165-Thr166) anchors the b4 strand to the adjacent

b1 strand and hydrophobic core. The four residues following the

threonine are also highly conserved, potentially because they

must retain flexibility to form the discrete secondary structural

states seen in the two conformations. The two central residues

of type I0 b turns, named i+1 and i+2, are located in the aL energy

minima of the Ramachandran plot whereby type I0 b turns are

intrinsically less stable (Yan et al., 1993; Yang et al., 1996).

Only the i+1 and i+2 residues undergo a drastic f and 4 change

between the two secondary structural states seen in the crystals.

The f and 4 angles of the i and i+3 b turn residues remain the

same between the two conformational states, allowing similar

backbone hydrogen bonds to form even though the i+3 residues
ts reserved
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move�13 Å. Both these factors may reduce the energy required

to undergo the transition between the b turn and b sheet confor-

mations. The threonine residue preceding the b turn may act as

a conformational switch in this region, because thep andm side-

chain conformations (Lovell et al., 2000) correlate to the four-

stranded and five-stranded b sheet conformations.

The poorly structured N-terminal region within the CC is

known to have an important role in the function of the Boca/

Mesd family. Removal of the conserved N-terminal sequence

from mmMesd, leaving the SD, prevents LRP6 from reaching

the cell surface (Koduri and Blacklow, 2007; Li et al., 2005).

The boca1 allele, a point mutation of an invariant tryptophan

(dm W49) residue within this region, also disrupts chaperone

function (Culi andMann, 2003). The reverse experiment, removal

of the SD, has yet to be tested; however, the SD is also probably

essential for chaperone function, owing to the highly conserved

amino acid sequence found throughout the CC. Both regions of

the CC are likely to function together in Boca/Mesd activity as

a chaperone for the YWTD b propeller-EGF domain pair,

because both regions are well conserved throughout evolution

and analytical ultracentrifugation experiments suggest that inter-

actions between these regions prevent dimer formation. How

they might interact with one another and with LDLR family

substrates remain open questions.

The highly charged variable tail that follows on from the fifth

strand is essentially absent in invertebrates, and it is not well

conserved when compared to the preceding CC. In vertebrates,

the C-terminal tail is approximately 30–45 residues long, �50%

of these residues are charged, and a further �38% are polar or

glycine. The tail together with the last five residues of the SD

binds LRP6 on the cell surface (Li et al., 2005). Like RAP and

other LDLR ligands, this is most likely achieved through the elec-

trostatic interactions of the charged residues (Blacklow, 2007).

An mmMesd with the C-terminal tail removed fails to bind to

LRP6, likely because the receptor is fully folded and the CC is ex-

pected to interact with a nonnative state to carry out its chap-

erone function (Li et al., 2005). In a separate functional assay,

full-length mmMesd rescues LRP6 surface expression in

HEK293T cells treated with human Mesd RNAi (Koduri and

Blacklow, 2007). Another construct, containing most of the CC

and a segment of the variable tail, is able to partially recover

LRP6 surface expression; however, chaperone or trafficking

activity of this protein is abolished by removing the last five resi-

dues of the SD along with the variable tails (Koduri and Blacklow,

2007). Thus, the residues that can form the fifth strand appear to

be essential to the function of this chaperone.

Based on current understanding of chaperone function, two

distinct binding mechanisms for the structurally discrete regions

of the CC can be proposed. Disorder in a protein, as in the

N-terminal region of Boca/Mesd, can provide high-specificity,

low-affinity binding through a mechanism of entropy-enthalpy

compensation. The entropic cost to stabilize an unstructured

protein region counteracts the generally favorable enthalpic

driving force of substrate binding (Dyson and Wright, 2005). In

protein chaperones, �15% of residues fall within disordered

regions greater than 30 residues (Tompa and Csermely, 2004).

These unstructured regions uncouple affinity from specificity,

providing promiscuous substrate recognition, as well as solubi-

lizing exposed hydrophobic regions within the substrate,
Structure 19,
through association of the hydrophilic disordered regions and

by the exclusion effect, which blocks substrate molecules from

approaching one another. Enthalpy transfer has also been

proposed as a chaperone mechanism, in which the free energy

cost of local unfolding of the substrate may be ‘‘covered’’ by

the enthalpic cost of ordering the disordered chaperone upon

binding, allowing multiple rounds of binding and release (Tompa

and Csermely, 2004).

The rigidb sheet of theSD,meanwhile, in effect provides a rela-

tively smooth and consistent surface (Chothia and Janin, 1981),

one that is the same for all of the structures including the dissim-

ilar mmMesd crystal and NMR (PDB ID code 2I9S) structures.

Both b sheet structures, such as other SDs in the dimeric states,

and a-helical structures, such as the N-terminal segment of the

CC, interact with the relatively small surface of this stable struc-

tural element. Nonspecific binding occurs through the conserved

surface residues, primarily located on strands b1, b2, and b3. The

energetic cost of binding these distinct secondary structural

elements is low, because only side-chain rearrangements are

required for the b sheet to accommodate different binding part-

ners (Chothia and Janin, 1981).

In conclusion, the surface expression of functional LDL recep-

tors and LRPs depends on the action of Boca/Mesd proteins in

the ER. These private chaperones specifically assist in the

proper folding of the YWTD propeller domains that characterize

LRPs. Our structural studies on diverse members of the Boca/

Mesd family limit options for themechanism of chaperone action

by these proteins and pave the way for future mutational studies.
EXPERIMENTAL PROCEDURES

Cloning, Protein Expression, and Purification

Mature chaperone protein (MP; dmBoca 19–176,mmMesd 30–220, ceBMY-1

19–182), conserved core (CC; dm 31–172,mm 43–183, ce 24–174), and struc-

tured domain (SD; dm 88–172,mm 99–183, ce 84–174) for each species were

PCR amplified from full-length cDNAs ofmesd and boca (both kindly provided

by J. Culi), and BMY-1 (Boca/Mesd chaperone for YWTD b propeller-EGF)

using appropriate 50 and 30 primers. The full BMY-1 ORF was produced using

an RT-PCR kit (Promega) from a worm total RNA extract (a gift from J. Etch-

berg); the resulting cDNA, ligated between the NdeI and BamHI restriction

sites of pET22b+ (Novagen), perfectly matched the predicted gene,

F09E5.17 (WormBase, release ws125).

The MP, CC, and SD PCR-amplified products were all engineered with an

NdeI restriction site at the 50 end and a stop codon preceding either a BamHI

or HindIII restriction site at the 30 end. These DNA fragments were ligated into

the equivalent restriction sites of the vector pET28b+ (Novagen). The nine re-

sulting fusion protein constructs contain, at the N terminus, a hexahistidine tag

and thrombin protease recognition sequence provided by the vector. Upon

thrombin cleavage, an additional GSHM sequence remains at the N-terminal

end of each protein. The final dmBocaSD product appeared to have additional

residues, GSQKHM, based upon mass spectrometry and N-terminal

sequencing.

Each fusion protein was expressed in Escherichia coli BL21(DE3) cells

(Novagen), grown in rich defined autoinduction media; PA5052 or

PASM5052 media were used for SeMet incorporation at 37�C for 6 hr followed

by overnight growth at 30�C after being inoculated 1:1000 from an overnight

culture grown in PA0.5G media (Studier, 2005). Induced cells were harvested

by centrifugation, resuspended in 50 mM Tris (pH 8.0) and 500 mM NaCl sup-

plemented with complete EDTA-free protease inhibitor (Roche), and frozen.

After thawing, cells were lysed by sonication and cleared by centrifugation

and filtration (0.22 mm) before initial affinity purification using a chelating HiTrap

column (GE Healthcare) charged with Ni2+. Each protein was eluted with

a linear imidazole gradient and dialyzed in the presence of thrombin (GE
324–336, March 9, 2011 ª2011 Elsevier Ltd All rights reserved 333



Structure

Conserved Core Structures in Boca/Mesd Chaperones
Healthcare) against 20 mM Tris (pH 8.0) and either 200 mM or 500 mM NaCl

overnight at 4�C. Samples were concentrated (Amicon) and further purified

by gel filtration on a Superdex 75 26/60 column (GE Healthcare) previously

equilibrated in the equivalent dialysis buffer. All protein samples appeared to

be dimeric by size-exclusion chromatography and were homogeneous when

analyzed by SDS-PAGE.

Crystallization

Two crystallization conditions were optimized for SeMet dmBocaSD by

hanging-drop vapor diffusion with a 1 ml:1 ml ratio of reservoir to protein solu-

tion (25 mg/ml in 10 mM Tris [pH 8.0], 100 mM NaCl). Form I crystals were

grown at 4�C against a reservoir solution containing 18%–21% (w/v) polyeth-

ylene glycol (PEG) 3350, 100–200mMNa citrate, 100mM 2-(cyclohexylamino)

ethanesulfonic acid (CHES) (pH 9.0), and 10 mM dithiothreitol by macroseed-

ing from an equivalent condition, which in turn were microseeded from

showers of small native dmBocaSD (22 mg/ml) form I crystals. The roughly

cubic crystals were serially soaked in reservoir solution supplemented with

gradually increasing glycerol concentrations, 6.6%, 13.3%, and 20%, prior

to freezing in liquid nitrogen.

The second SeMet dmBocaSD crystals (form II) were one of four crystal

morphologies that grew against a reservoir solution containing 48%–52%

saturated AmSO4, 100 mM sodium acetate (pH 5.6–5.8) at 20�C. The thin

hexagonal pyramid-shaped crystals were soaked in cryoprotection buffer con-

sisting of 80% saturated AmSO4, 100 mM sodium acetate (pH 5.7), and 10%

GSX-goop (40% glycerol, 32% sucrose, and 16% xylitol) before freezing in

liquid nitrogen. The other crystal morphologies found under this condition

did not produce sufficient quality diffraction data for structure determination.

Crystals ofmmMesdSD were grown by hanging-drop vapor diffusion against

a mother liquor containing 0.7–0.9 M AmPO4 and 100 mM HEPES (pH 7.5) at

4�Cwhich were nucleated by streak seeding frommicrocrystal showers found

under conditions with higher AmPO4 precipitant concentration. A native

protein solution (27 mg/ml in 10 mM Tris [pH 8.0], 10 mM NaCl) to reservoir

ratio of 1:1 (1 ml each) was used. Stout square rod-shaped crystals grew

over several weeks, and were frozen in liquid nitrogen after gradually

increasing, in three steps, to a final solution that consisted of the crystallization

buffer supplemented with 15% ethylene glycol and 5% glycerol.

SeMet ceBMY-1SD crystals were grown by hanging-drop vapor diffusion at

20�C against a crystallization buffer containing 15%–18% PEG 3350, 300–

500 mM LiCl2, and 100 mM MES (pH 5.5). A protein solution (38 mg/ml

10mM Tris [pH 8.0], 10 mMNaCl, 1 mMDDT) was used with a protein to buffer

ratio of 1:1 (1 ml each). Thick square plate crystals typically appeared overnight

and grew to an optimal size within 7 days. Crystals were cryoprotected in one-

third steps to a final solution that consisted of the crystallization buffer supple-

mented with either 20% glycerol or 5% glycerol and 15% ethylene glycol.

Structure Determination

dmBocaSD (I)

A three-wavelength MAD experiment was collected at the Se K-edge from

a single frozen SeMet crystal at X25 beamline of the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory. Diffraction data to Bragg

spacings of 2.5 Å (peak, edge) and 2.8 Å (remote) with a 440 mm detector

distance were collected using 6 s exposure times and 3� oscillations at each

of the three wavelengths. Accurate Bijvoet differences were measured by col-

lecting the inverse beam. A second peak-wavelength data set, with no inverse

beam, was collected through a different portion of the same crystal, to a Bragg

spacing of 2.3 Å, using 2 s exposure times, 1� oscillations, and a detector

distance of 320 mm. Data sets were indexed and merged using Denzo and

Scalepack of the HKL program package (Otwinowski and Minor, 1997).

Phases were calculated using Solve (v2.08) (Terwilliger and Berendzen,

1999), which found four of the six potential Se sites for the P4122 space group.

An initial composite model derived from both Resolve (v2.08) (Terwilliger,

2000) and ArpWarp (v6.0) (Perrakis et al., 1999) autobuilding procedures

was refined at 2.3 Å resolution using CNS (v1.1) (Brünger et al., 1998) and

PHENIX (v1.3) (Adams et al., 2002), with iterative rounds of manual rebuilding

in Coot (v0.5) (Emsley and Cowtan, 2004).

dmBocaSD (II)

An f00 peak SAD experiment was collected at the Se K-edge on the NSLS X4C

beamline from a single frozen form II crystal of SeMet dmBocaSD. Diffraction
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data to a Bragg spacing of 2.0 Å with a 100 mm detector distance were re-

corded using 20 s exposure times, 1� oscillations, and an inverse beam for

accurate measurements of Bijvoet differences. Data were indexed, merged,

and processed using the HKL2000 package and refined with PHENIX in the

space group P6522. Solve (v2.13) located all three Se sites, and after solvent

flattening with dm (v6.1) (Cowtan, 1994), ArpWarp (v7.0.1) was able to build

a complete model that was refined in PHENIX (v1.3) with iterative rounds of

manual rebuilding in Coot.

mmMesdSD

Data from a frozen crystal ofmmMesdSD were collected at the NSLS beamline

X4C to a Bragg spacing of 2.0 Å with 9 s exposure times, 0.5� oscillations, and
a detector distance of 150 mm. HKL2000 was used for data processing, and

the native mmMesdSD structure was determined, in the P43 space group, by

molecular replacement using Phaser (v2.0) (McCoy et al., 2007) with the

four-stranded dmBocaSD (I) protomer as a search model. The initial model

generated by rebuilding the MR solution using ArpWarp (v6.0) was refined

using PHENIX with the twin operator [h,-k,-l] and two TLS groups consisting

of each peptide chain in the asymmetric unit, with iterative rounds of manual

rebuilding in Coot. An Se K-edge SeMet mmMesdSD experiment (data not

shown), which was unable to produce a phase solution, confirmed the position

of the Se (and twin Se) sites by calculating an anomalous map with phases

from a partially refined mmMesdSD model.

ceBMY-1SD

Data from a single SeMet ceBMY-1SD crystal were collected in two parts at the

X4C beamline of NSLS. The first sweep, using a detector distance of 88 mm

and 1� oscillations of 8 s exposure times, diffracted X-rays to 1.37 Å resolution.

The second sweep used a detector distance of 135 mm and 1� oscillations of

1 s exposure times, due to low angle reflections overloading the detector

during the longer exposure times required for the first, higher-resolution,

sweep. HKL2000 and PHENIX were used to process and merge the data,

which were only compatible with a primitive triclinic space group. The molec-

ular replacement solution found by Phaser using the five-stranded dmBocaSD
(I) protomer as a searchmodel was fed to ArpWarp for phase improvement and

automated model building. The resulting model with an addition of riding

hydrogen atoms was refined using PHENIX, with iterative rounds of manual

rebuilding in Coot.

Structural Analysis

All superpositions were performed with LSQMAN (v9.7.9) from the Uppsala

software package (Kleywegt, 1996). The Ca positions of each SD protomer

were superposed and manually adjusted to maximize the number of structur-

ally aligned residues in both pairwise and multiple model superpositions, such

that three or more contiguous Ca positions were within 2.5 Å of equivalent

positions. The rotation-translation matrices of the molecular axes of symmetry

were determined by TOSS (Hendrickson, 1979) using the core 65 Ca positions

defined during the multiple model superposition. Escet (v0.7h) (Schneider,

2004) error-scaled difference distance matrices allowed for comparisons of

SDs to each other as well as for bothmmMesdSD protomers to the 20 models

in the NMR ensemble (PDB ID code 2I9S). CCP4 programs contact and area-

imol (CCP4, 1994) were used to define the atoms participating in the interface

and assess their change in buried surface area during dimer formation. An

alignment of 48 orthologous Boca/Mesd sequences grouped by TreeFam

(http://www.treefam.org) (Li et al., 2006a) was in conjunction with ConSurf

(http://consurf.tau.ac.il) (Landau et al., 2005) to map the level of evolutionary

conservation at each residue’s position onto the SD structures. Figures were

prepared with PyMOL (DeLano, 2002).

Limited Proteolytic Degradation

Subtilisin, trypsin, chymotrypsin (Sigma), and elastase (Worthington) were

resuspended in cold protease buffer (10 mM NaCl, 10 mM Tris [pH 8.0]) at

1 mg/ml, and the serial dilutions of these stock solutions were stored on ice.

Proteolytic reactions, set up on ice, contained 9 ml of a purified MP diluted

to 1 mg/ml with cold protease buffer and 1 ml of protease at a final concentra-

tion of 10, 1, 0.1, and 0.01 mg/ml, or 1 ml PBS for the control. Reactions were

moved to 20�C and terminated after 30 min by removing 2 ml into 2 ml of TFA

for analysis by MALDI-TOF mass spectrometry, while the remaining 8 ml was

stopped by the addition of 3 ml 43 SDS-PAGE loading buffer. After boiling

for 3 min, proteolytically digested samples were analyzed by SDS-PAGE,
ts reserved
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and both were visualized with Coomassie blue and transferred to polyvinyldi-

fluoride for N-terminal sequencing by Edman degradation.

Analytical Ultracentrifugation

Sedimentation equilibrium experiments were performed with a Beckman-

Coulter XLI analytical ultracentrifuge using both UV 280 nm and IR 660 nm

optics. Native purified dmBocaSD,mmMesdSD, and ceBMY-1SD were dialyzed

at 4�C and then diluted to approximately 0.70, 0.46, and 0.24 mg/ml with 23

PBS. Native purified dmBocacc, mmMesdMP, and ceBMY-1MP were treated

in a similar fashion, and diluted to 0.70, 0.46, and 0.24mg/ml. Protein samples,

each at the three concentrations, were loaded into three channels of a six-

channel cell with sapphire windows and a path length of 12mm; the other three

channels contained buffer blank controls. The SD protein samples were sedi-

mented to equilibrium in a Ti50An rotor at three to five rotor speeds ranging

from 14,000 to 26,000 rpm at 25�C (see Figure S2). UV absorbance and IR

interference scans were taken at 1 hr intervals. The program HeteroAnalysis

(v1.0.114) (http://www.biotech.uconn.edu/auf/ha-help/HA-Help.htm) enabled

group fitting of the equilibrium data at all three speeds and concentrations for

each protein sample.
NMR Spectroscopy

Recombinant dmBocaCC and dmBocaSD constructs were expressed in M9

minimal medium (Sambrook and Russell, 2001) with 99%-15NH4Cl as the

sole nitrogen source (Cambridge Isotopes) in the M9 salts. Protein purification

followed the protocol described above. The NMR buffer consisted of 20 mM

MES (pH 6.0) and 50 mM NaCl. dmBocaCC was dialyzed overnight at 4�C
against NMR buffer and concentrated to 0.66 mM; the dmBocaSD was

exchanged directly into NMR buffer during concentration to 0.42 mM. NMR

buffers also contained 0.02% NaN3 and 10% D2O.

NMR 15N-1H TROSY spectra for both 15N-labeled 0.36 mM dmBocaSD and

0.46 mM dmBocaCC were acquired on a Bruker DRX-600 with a triple-reso-

nance z axis gradient cryogenic probe at 299.5K. The sample temperature

was calibrated with 99.8% d4-methanol, and postacquisition processing of

the spectra was performed with NMRPipe (Delaglio et al., 1995) and Sparky

3 (http://www.cgl.ucsf.edu/home/sparky).

Protein Alignment

Protein sequences NP_724578(dm), NP_495003(ce), Q9ERE7(Mm), Q14696

(Hs), Q5ZKK4(Gg), A1L243(Dr), and AAH97859(Xl) from Entrez Protein

(http://www.ncbi.nlm.nih.gov/protein) were used in the alignment of the

Boca/Mesd family.
ACCESSION NUMBERS

Atomic coordinates and structure factors have been deposited in the Protein

Data Bank (http://www.rcsb.org/pdb) under PDB ID codes 3OFE, 3OFF,

3OFG, and 3OFH. See Table 3 for identifications.
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Supplemental Information includes two figures and four tables and can be

found with this article online at doi:10.1016/j.str.2010.11.017.
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Note Added in Proof

We had previously compared our crystal structures to published NMR struc-

tures of Mesd (Table 4; Table S1). Now, through an exchange of accepted

papers facilitated byStructure, we have also studied the additional NMR struc-

tures described in two other papers in this issue. We present these updated

analyses in Tables S3 and S4. The core domains from both the ‘‘open’’ and

‘‘closed’’ states of the longer mouse Mesd structures, noted in the Discussion

and reported here by Köhler et al. (2011) are appreciably closer in rmsd (1.51–

1.84 Å versus 2.21–2.35 Å) to our X-ray structures ofmmMesdSD thanwas their

previous shorter structure (Köhler et al., 2006), and validation parameters from

our MolProbity and cavity analyses are also markedly improved. The confor-

mation of Mesd in the new model reported here by Chen et al. (2011) is

unchanged from that previously reported (Chen et al., 2010a). As this confor-

mation is irreconcilable with that of our crystal structures, we remain unable to

make a meaningful comparison. We find the validation parameters, cavity

features and b sheet twist characteristics in this model for full-length Mesd

to be unusual (Table S4).
ts reserved
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