1,152 research outputs found

    Sociobiological Control of Plasmid copy number

    Get PDF
    Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone

    Promoter Methylation in Head and Neck Squamous Cell Carcinoma Cell Lines Is Significantly Different than Methylation in Primary Tumors and Xenografts

    Get PDF
    Studies designed to identify novel methylation events related to cancer often employ cancer cell lines in the discovery phase of the experiments and have a relatively low rate of discovery of cancer-related methylation events. An alternative algorithm for discovery of novel methylation in cancer uses primary tumor-derived xenografts instead of cell lines as the primary source of nucleic acid for evaluation. We evaluated DNA extracted from primary head and neck squamous cell carcinomas (HNSCC), xenografts grown from these primary tumors in nude mice, HNSCC-derived cell lines, normal oral mucosal samples, and minimally transformed oral keratinocyte-derived cell lines using Illumina Infinum Humanmethylation 27 genome-wide methylation microarrays. We found >2,200 statistically significant methylation differences between cancer cell lines and primary tumors and when comparing normal oral mucosa to keratinocyte cell lines. We found no statistically significant promoter methylation differences between primary tumor xenografts and primary tumors. This study demonstrates that tumor-derived xenografts are highly accurate representations of promoter methylation in primary tumors and that cancer derived cell lines have significant drawbacks for discovery of promoter methylation alterations in primary tumors. These findings also support use of primary tumor xenografts for the study of methylation in cancer, drug discovery, and the development of personalized cancer treatments

    Characterization of a Clp Protease Gene Regulator and the Reaeration Response in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the ∼100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia

    Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial

    Get PDF
    Background: Tai Chi (TC) is a mind-body exercise that shows potential as an effective and safe intervention for preventing fall-related fractures in the elderly. Few randomized trials have simultaneously evaluated TC's potential to reduce bone loss and improve fall-predictive balance parameters in osteopenic women. Methods: In a pragmatic randomized trial, 86 post-menopausal osteopenic women, aged 45-70, were recruited from community clinics. Women were assigned to either nine months of TC training plus usual care (UC) vs. UC alone. Primary outcomes were changes between baseline and nine months of bone mineral density (BMD) of the proximal femur and lumbar spine (dual-energy X-ray absorptiometry) and serum markers of bone resorption and formation. Secondary outcomes included quality of life. In a subsample (n = 16), quiet standing fall-predictive sway parameters and clinical balance tests were also assessed. Both intent-to-treat and per-protocol analyses were employed. Results: For BMD, no intent-to-treat analyses were statistically significant; however, per protocol analyses (i.e., only including TC participants who completed \geq 75% training requirements) of femoral neck BMD changes were significantly different between TC and UC (+0.04 vs. -0.98%; P = 0.05). Changes in bone formation markers and physical domains of quality of life were also more favorable in per protocol TC vs. UC (P = 0.05). Changes in sway parameters were significantly improved by TC vs. UC (average sway velocity, P = 0.027; anterior-posterior sway range, P = 0.014). Clinical measures of balance and function showed non-significant trends in favor of TC. Conclusions: TC training offered through existing community-based programs is a safe, feasible, and promising intervention for reducing multiple fracture risks. Our results affirm the value of a more definitive, longer-term trial of TC for osteopenic women, adequately powered to detect clinically relevant effects of TC on attenuation of BMD loss and reduction of fall risk in this population

    The Intermediate Filament Network in Cultured Human Keratinocytes Is Remarkably Extensible and Resilient

    Get PDF
    The prevailing model of the mechanical function of intermediate filaments in cells assumes that these 10 nm diameter filaments make up networks that behave as entropic gels, with individual intermediate filaments never experiencing direct loading in tension. However, recent work has shown that single intermediate filaments and bundles are remarkably extensible and elastic in vitro, and therefore well-suited to bearing tensional loads. Here we tested the hypothesis that the intermediate filament network in keratinocytes is extensible and elastic as predicted by the available in vitro data. To do this, we monitored the morphology of fluorescently-tagged intermediate filament networks in cultured human keratinocytes as they were subjected to uniaxial cell strains as high as 133%. We found that keratinocytes not only survived these high strains, but their intermediate filament networks sustained only minor damage at cell strains as high as 100%. Electron microscopy of stretched cells suggests that intermediate filaments are straightened at high cell strains, and therefore likely to be loaded in tension. Furthermore, the buckling behavior of intermediate filament bundles in cells after stretching is consistent with the emerging view that intermediate filaments are far less stiff than the two other major cytoskeletal components F-actin and microtubules. These insights into the mechanical behavior of keratinocytes and the cytokeratin network provide important baseline information for current attempts to understand the biophysical basis of genetic diseases caused by mutations in intermediate filament genes

    Holographic Vitrification

    Get PDF
    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.Comment: 100 pages, 25 figure
    corecore