959 research outputs found
The free path in a high velocity random flight process associated to a Lorentz gas in an external field
We investigate the asymptotic behavior of the free path of a variable density
random flight model in an external field as the initial velocity of the
particle goes to infinity. The random flight models we study arise naturally as
the Boltzmann-Grad limit of a random Lorentz gas in the presence of an external
field. By analyzing the time duration of the free path, we obtain exact forms
for the asymptotic mean and variance of the free path in terms of the external
field and the density of scatterers. As a consequence, we obtain a diffusion
approximation for the joint process of the particle observed at reflection
times and the amount of time spent in free flight.Comment: 30 page
"Cold Melting" of Invar Alloys
An anomalously strong volume magnetostriction in Invars may lead to a
situation when at low temperatures the dislocation free energy becomes negative
and a multiple generation of dislocations becomes possible. This generation
induces a first order phase transition from the FCC crystalline to an amorphous
state, and may be called "cold melting". The possibility of the cold melting in
Invars is connected with the fact that the exchange energy contribution into
the dislocation self energy in Invars is strongly enhanced, as compared to
conventional ferromagnetics, due to anomalously strong volume magnetostriction.
The possible candidate, where this effect can be observed, is a FePt disordered
Invar alloy in which the volume magnetostriction is especially large
Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration
A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included
Branching coral growth and visual health during bleaching and recovery on the central Great Barrier Reef
Coral reefs are under threat from cumulative impacts such as cyclones, crown-of-thorns starfish (COTS) outbreaks and climate-driven coral bleaching events. Branching corals are more severely impacted by these events than other coral morphologies due to their sensitivity to heat stress and weaker skeletons and COTS preferred prey. The central Great Barrier Reef experienced unprecedented back-to-back bleaching events in 2016 and 2017. This study commenced in 2017 at the peak of heat stress and examined the impact of the heatwave on the survival and recovery of corals by assessing the growth, health (based on the visual health index) and physiological parameters (chlorophyll a, zooxanthellae density, lipid and protein content) of two species, Acropora millepora and Pocillopora acuta (N = 60 colonies for each species). It was conducted across a gradient of turbidity at three reefs, Pandora, Orpheus and Rib, that experienced in April 2017, degree heating weeks (DHW) of 9, 8 and 7, respectively. Orpheus experienced the worst bleaching, based on visual health score, followed by Rib and Pandora. Rib experienced the greatest mortality (78% by Nov 2017); however, this was attributed to the presence of actively feeding crown-of-thorns starfish. Growth rates of A. millepora were almost twice the rate of P. acuta. Both species showed significant seasonal variation with growth of A. millepora and P. acuta 35–40% and 23–33% significantly greater in the summer, respectively. Differences in growth rates were best explained by indicators of energy acquisition. For example, the most important predictor variable in determining higher growth rates and visual health score in A. millepora was chlorophyll a content. For P. acuta, visual health score was the best predictor variable for higher growth rates. This study highlights the important role that chlorophyll a and associated symbionts play in growth and survival in these corals during and after a heat stress event
Zebrafish Reproduction: Revisiting In Vitro Fertilization to Increase Sperm Cryopreservation Success
Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 106 cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 106 motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
Martensites are materials that undergo diffusionless, solid-state
transitions. The martensitic transition yields properties that depend on the
history of the material and may allow it to recover its previous shape after
plastic deformation. This is known as the shape-memory effect (SME). We have
succeeded in identifying the primary electronic mechanism responsible for the
martensitic transition in the shape-memory alloy AuZn by using Fermi-surface
measurements (de Haas-van Alphen oscillations) and band-structure calculations.
This strongly suggests that electronic band structure is an important
consideration in the design of future SME alloys
Patient acceptability of larval therapy for leg ulcer treatment: a randomised survey to inform the sample size calculation of a randomised trial
BACKGROUND: A trial was commissioned to evaluate the effectiveness of larval therapy to debride and heal sloughy and necrotic venous leg ulcers. Larval therapy in the trial was to be delivered in either loose or bagged form. Researchers were concerned that resistance to larval therapy may threaten the feasibility of the trial. Additionally there was concern that the use of larval therapy may require a larger effect size in time to healing than originally proposed by the investigators. METHODS: To formally evaluate patient preferences a survey using two randomly allocated, nurse administered questionnaires was undertaken. Patients were randomised to receive one of the two following questionnaires (i) preferences between loose larvae and standard treatment (hydrogel) or (ii) patient preferences between bagged larvae and standard therapy (hydrogel). The study was undertaken in a Vascular Clinic, in an Outpatients Department of a large teaching hospital in the North of England. The sample consisted of 35 people aged 18 years and above with at least one leg ulcer of venous or mixed (venous and arterial) aetiology. RESULTS: Approximately 25% of participants would not consider the use of larval therapy as an acceptable treatment option for leg ulcers, regardless of the method of containment. For the patients that would consider the use of larval therapy, different preferences in healing times required to use the therapy were observed depending upon the method of containment. The median response of those participants questioned about bagged larvae found that they would be willing to use this therapy even if they were equally able to achieve healing with the use of hydrogel by 20 weeks. For those participants questioned about the use of loose larvae complete healing would have to have taken place over 17 weeks for them to choose larvae as their preferred option rather than hydrogel. This difference was not significant (p = 0.075). CONCLUSION: We found no evidence of widespread resistance to the utilisation of larval therapy from patients regardless of the method of larval therapy containment. These methods have the potential to inform sample size calculations where there are concerns of patient acceptability
Crystallographic structure of ultrathin Fe films on Cu(100)
We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100)
using scanning tunneling microscopy. The local bcc structure provides a
straightforward explanation for their frequently reported outstanding magnetic
properties, i.e., ferromagnetic ordering in all layers with a Curie temperature
above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above
4 ML film thickness is unexpected in terms of conventional rules of thin film
growth and stresses the importance of finite thickness effects in ferromagnetic
ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0
Using Student Achievement Data to Support Instructional Decision Making
As educators face increasing pressure from federal, state, and local accountability policies to improve student achievement, the use of data has become more central to how many educators evaluate their practices and monitor students’ academic progress (Knapp et al., 2006). Despite this trend, questions about how educators should use data to make instructional decisions remain mostly unanswered. In response, this guide provides a framework for using student achievement data to support instructional decision making. These decisions include, but are not limited to, how to adapt lessons or assignments in response to students’ needs, alter classroom goals or objectives, or modify student-grouping arrangements. The guide also provides recommendations for creating the organizational and technological conditions that foster effective data use. Each recommendation describes action steps for implementation, as well as suggestions for addressing obstacles that may impedeprogress. In adopting this framework, educators will be best served by implementing the recommendations in this guide together rather than individually
- …