1,873 research outputs found
On the Absence of Spurious Eigenstates in an Iterative Algorithm Proposed By Waxman
We discuss a remarkable property of an iterative algorithm for eigenvalue
problems recently advanced by Waxman that constitutes a clear advantage over
other iterative procedures. In quantum mechanics, as well as in other fields,
it is often necessary to deal with operators exhibiting both a continuum and a
discrete spectrum. For this kind of operators, the problem of identifying
spurious eigenpairs which appear in iterative algorithms like the Lanczos
algorithm does not occur in the algorithm proposed by Waxman
GeV Photons from Ultra High Energy Cosmic Rays accelerated in Gamma Ray Bursts
Gamma-ray bursts are produced by the dissipation of the kinetic energy of a
highly relativistic fireball, via the formation of a collisionless shock. When
this happens, Ultra High Energy Cosmic Rays up to 10^20 eV are produced. I show
in this paper that these particles produce, via synchrotron emission as they
cross the acceleration region, photons up to 300 GeV which carry away a small,
~0.01, but non-negligible fraction of the total burst energy. I show that, when
the shock occurs with the interstellar medium, the optical depth to
photon-photon scattering, which might cause energy degradation of the photons,
is small. The burst thusly produced would be detected at Earth simultaneoulsy
with the parent gamma-ray burst, although its duration may differ significantly
from that of the lower energy photons. The expected fluences, ~10^{-5}-10^{-6}
erg/cm^2 are well within the range of planned detectors. A new explanation for
the exceptional burst GRB 940217 is discussed.Comment: Accepted for publication in The Physical Review Letters. 4 pages,
RevTeX needed, no figure
Well-posedness of Hydrodynamics on the Moving Elastic Surface
The dynamics of a membrane is a coupled system comprising a moving elastic
surface and an incompressible membrane fluid. We will consider a reduced
elastic surface model, which involves the evolution equations of the moving
surface, the dynamic equations of the two-dimensional fluid, and the
incompressible equation, all of which operate within a curved geometry. In this
paper, we prove the local existence and uniqueness of the solution to the
reduced elastic surface model by reformulating the model into a new system in
the isothermal coordinates. One major difficulty is that of constructing an
appropriate iterative scheme such that the limit system is consistent with the
original system.Comment: The introduction is rewritte
High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs
Observations suggest that -ray bursts (GRBs) are produced by the
dissipation of the kinetic energy of a relativistic fireball. We show that a
large fraction, , of the fireball energy is expected to be converted
by photo-meson production to a burst of neutrinos. A km^2
neutrino detector would observe at least several tens of events per year
correlated with GRBs, and test for neutrino properties (e.g. flavor
oscillations, for which upward moving 's would be a unique signature, and
coupling to gravity) with an accuracy many orders of magnitude better than is
currently possible.Comment: Submitted to PRL (4 pages, LaTeX
High Energy Neutrinos from Astrophysical Sources: An Upper Bound
We show that cosmic-ray observations set a model-independent upper bound to
the flux of high-energy, > 10^14 eV, neutrinos produced by photo-meson (or p-p)
interactions in sources of size not much larger than the proton photo-meson (or
pp) mean-free-path. The bound applies, in particular, to neutrino production by
either AGN jets or GRBs. This upper limit is two orders of magnitude below the
flux predicted in some popular AGN jet models, but is consistent with our
predictions from GRB models. We discuss the implications of these results for
future km^2 high-energy neutrino detectors.Comment: Added discussion showing bound cannot be evaded by invoking magnetic
fields. Accepted Phys Rev
Afterglow Light Curve Modulated by a Highly Magnetized Millisecond Pulsar
We investigate consequences of a continuously energy-injecting central engine
of gamma-ray burst (GRB) afterglow emission, assuming that a highly magnetized
pulsar is left beaming in the core of a GRB progenitor. Beaming and continuous
energy-injection are natural consequences of the pulsar origin of GRB
afterglows. Whereas previous studies have considered continuous
energy-injection from a new-born pulsar to interpret the deviation of afterglow
light curves of GRBs from those with the simple power law behavior, a beaming
effect, which is one of the most important aspects of pulsar emissions, is
ignored in earlier investigations. We explicitly include the beaming effect and
consider a change of the beaming with time due to a dynamical evolution of a
new-born pulsar. We show that the magnitude of the afterglow from this fireball
indeed first decreases with time, subsequently rises, and declines again. One
of the most peculiar optical afterglows light curve of GRB 970508 can be
accounted for by continuous energy injection with beaming due to a highly
magnetized new-born pulsar. We discuss implications on such observational
evidence for a pulsar.Comment: 4 pages, 1 table, submitted to Astronomy and Astrophysics (Letters
Maximum Likelihood Analysis of Clusters of Ultra-High Energy Cosmic Rays
We present a numerical code designed to conduct a likelihood analysis for
clusters of nucleons above 10**19 eV originating from discrete astrophysical
sources such as powerful radio galaxies, gamma-ray bursts or topological
defects. The code simulates the propagation of nucleons in a large-scale
magnetic field and constructs the likelihood of a given observed event cluster
as a function of the average time delay due to deflection in the magnetic
field, the source activity time scale, the total fluence of the source, and the
power law index of the particle injection spectrum. Other parameters such as
the coherence length and the power spectrum of the magnetic field are also
considered. We apply it to the three pairs of events above 4X10**19 eV recently
reported by the Akeno Giant Air Shower Array (AGASA) experiment, assuming that
these pairs were caused by nucleon primaries which originated from a common
source. Although current data are too sparse to fully constrain each of the
parameters considered, and/or to discriminate models of the origin of
ultra-high energy cosmic rays, several tendencies are indicated. If the
clustering suggested by AGASA is real, next generation experiments with their
increased exposure should detect more than 10 particles per source over a few
years and our method will put strong constraints on both the large-scale
magnetic field parameters and the nature of these sources.Comment: 11 latex pages, 8 postscript figures included, uses revtex.sty in
two-column format and epsf.sty. Submitted to Physical Review
Some Remarks on Theories with Large Compact Dimensions and TeV-Scale Quantum Gravity
We comment on some implications of theories with large compactification radii
and TeV-scale quantum gravity. These include the behavior of high-energy
gravitational scattering cross sections and consequences for ultra-high-energy
cosmic rays and neutrino scattering, the question of how to generate naturally
light neutrino masses, the issue of quark-lepton unification, the equivalence
principle, and the cosmological constant.Comment: 28 pages, Late
The Current Carried by Bound States of a Superconducting Vortex
We investigate the spectrum of quasiparticle excitations in the core of
isolated pancake vortices in clean layered superconductors. Analysis of the
spectral current density shows that both the circular current around the vortex
center as well as any transport current through the vortex core is carried by
localized states bound to the core by Andreev scattering. Hence the physical
properties of the core are governed in clean high- superconductors
(e.g. the cuprate superconductors) by the Andreev bound states, and not by
normal electrons as it is the case for traditional (dirty) high-
superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript.
Submitted to Physical Review
- …