1,873 research outputs found

    On the Absence of Spurious Eigenstates in an Iterative Algorithm Proposed By Waxman

    Full text link
    We discuss a remarkable property of an iterative algorithm for eigenvalue problems recently advanced by Waxman that constitutes a clear advantage over other iterative procedures. In quantum mechanics, as well as in other fields, it is often necessary to deal with operators exhibiting both a continuum and a discrete spectrum. For this kind of operators, the problem of identifying spurious eigenpairs which appear in iterative algorithms like the Lanczos algorithm does not occur in the algorithm proposed by Waxman

    GeV Photons from Ultra High Energy Cosmic Rays accelerated in Gamma Ray Bursts

    Full text link
    Gamma-ray bursts are produced by the dissipation of the kinetic energy of a highly relativistic fireball, via the formation of a collisionless shock. When this happens, Ultra High Energy Cosmic Rays up to 10^20 eV are produced. I show in this paper that these particles produce, via synchrotron emission as they cross the acceleration region, photons up to 300 GeV which carry away a small, ~0.01, but non-negligible fraction of the total burst energy. I show that, when the shock occurs with the interstellar medium, the optical depth to photon-photon scattering, which might cause energy degradation of the photons, is small. The burst thusly produced would be detected at Earth simultaneoulsy with the parent gamma-ray burst, although its duration may differ significantly from that of the lower energy photons. The expected fluences, ~10^{-5}-10^{-6} erg/cm^2 are well within the range of planned detectors. A new explanation for the exceptional burst GRB 940217 is discussed.Comment: Accepted for publication in The Physical Review Letters. 4 pages, RevTeX needed, no figure

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs

    Get PDF
    Observations suggest that γ\gamma-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, 10\ge 10%, of the fireball energy is expected to be converted by photo-meson production to a burst of 1014eV\sim10^{14} eV neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving τ\tau's would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.Comment: Submitted to PRL (4 pages, LaTeX

    High Energy Neutrinos from Astrophysical Sources: An Upper Bound

    Full text link
    We show that cosmic-ray observations set a model-independent upper bound to the flux of high-energy, > 10^14 eV, neutrinos produced by photo-meson (or p-p) interactions in sources of size not much larger than the proton photo-meson (or pp) mean-free-path. The bound applies, in particular, to neutrino production by either AGN jets or GRBs. This upper limit is two orders of magnitude below the flux predicted in some popular AGN jet models, but is consistent with our predictions from GRB models. We discuss the implications of these results for future km^2 high-energy neutrino detectors.Comment: Added discussion showing bound cannot be evaded by invoking magnetic fields. Accepted Phys Rev

    Afterglow Light Curve Modulated by a Highly Magnetized Millisecond Pulsar

    Get PDF
    We investigate consequences of a continuously energy-injecting central engine of gamma-ray burst (GRB) afterglow emission, assuming that a highly magnetized pulsar is left beaming in the core of a GRB progenitor. Beaming and continuous energy-injection are natural consequences of the pulsar origin of GRB afterglows. Whereas previous studies have considered continuous energy-injection from a new-born pulsar to interpret the deviation of afterglow light curves of GRBs from those with the simple power law behavior, a beaming effect, which is one of the most important aspects of pulsar emissions, is ignored in earlier investigations. We explicitly include the beaming effect and consider a change of the beaming with time due to a dynamical evolution of a new-born pulsar. We show that the magnitude of the afterglow from this fireball indeed first decreases with time, subsequently rises, and declines again. One of the most peculiar optical afterglows light curve of GRB 970508 can be accounted for by continuous energy injection with beaming due to a highly magnetized new-born pulsar. We discuss implications on such observational evidence for a pulsar.Comment: 4 pages, 1 table, submitted to Astronomy and Astrophysics (Letters

    Maximum Likelihood Analysis of Clusters of Ultra-High Energy Cosmic Rays

    Get PDF
    We present a numerical code designed to conduct a likelihood analysis for clusters of nucleons above 10**19 eV originating from discrete astrophysical sources such as powerful radio galaxies, gamma-ray bursts or topological defects. The code simulates the propagation of nucleons in a large-scale magnetic field and constructs the likelihood of a given observed event cluster as a function of the average time delay due to deflection in the magnetic field, the source activity time scale, the total fluence of the source, and the power law index of the particle injection spectrum. Other parameters such as the coherence length and the power spectrum of the magnetic field are also considered. We apply it to the three pairs of events above 4X10**19 eV recently reported by the Akeno Giant Air Shower Array (AGASA) experiment, assuming that these pairs were caused by nucleon primaries which originated from a common source. Although current data are too sparse to fully constrain each of the parameters considered, and/or to discriminate models of the origin of ultra-high energy cosmic rays, several tendencies are indicated. If the clustering suggested by AGASA is real, next generation experiments with their increased exposure should detect more than 10 particles per source over a few years and our method will put strong constraints on both the large-scale magnetic field parameters and the nature of these sources.Comment: 11 latex pages, 8 postscript figures included, uses revtex.sty in two-column format and epsf.sty. Submitted to Physical Review

    Some Remarks on Theories with Large Compact Dimensions and TeV-Scale Quantum Gravity

    Full text link
    We comment on some implications of theories with large compactification radii and TeV-scale quantum gravity. These include the behavior of high-energy gravitational scattering cross sections and consequences for ultra-high-energy cosmic rays and neutrino scattering, the question of how to generate naturally light neutrino masses, the issue of quark-lepton unification, the equivalence principle, and the cosmological constant.Comment: 28 pages, Late

    The Current Carried by Bound States of a Superconducting Vortex

    Full text link
    We investigate the spectrum of quasiparticle excitations in the core of isolated pancake vortices in clean layered superconductors. Analysis of the spectral current density shows that both the circular current around the vortex center as well as any transport current through the vortex core is carried by localized states bound to the core by Andreev scattering. Hence the physical properties of the core are governed in clean high-κ\kappa superconductors (e.g. the cuprate superconductors) by the Andreev bound states, and not by normal electrons as it is the case for traditional (dirty) high-κ\kappa superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript. Submitted to Physical Review
    corecore