16 research outputs found

    Clearcutting and shearing on a saline soil in East Texas: Impacts on soil physical properties

    Get PDF
    Soil samples, or in-situ measurements, were collected at seven occasions and at six depths to study the Impact of three forest conditions on soil physical properties of a saline soil in E. Texas. Soil bulk density, CW. of silt plus clay at the surface horizons, soil water content, soil water retention, and depth to groundwater Increased following intensive site preparation. Differences in these properties between the commercial clearcuttlng and undisturbed forest were small. The wet soil conditions created in the Intensive preparation site are not likely to be responsible for the failure of artificial pine regeneration. In areas where site preparation may cause standing water on the surface, all plants and stumps should be left intact after marketable timber is removed

    Management and pest management considerations on droughty soils: four year results

    Get PDF
    Four year survival of pines on droughty (Typic Quartzips~mments) soils was best for longleaf pine and Terr-Sorb -treated loblolly pine. Pest considerations include town ants and Nantucket pine tip moths on loblolly pine. Untreated loblolly pine had reduced leader and total height growth anH increased tip moth infestations, compared to Terra-Sorb and clay-slurry treated loblolly pine. Soil texture averaged less than eight percent silt and clay combined in the treatment areas

    Forestry Bulletin No. 25: Silviculture of Southern Bottomland Hardwoods

    Get PDF
    The potential of southern bottomland hardwood types is clear, for they, along with the cypress, occupy about 37 million acres and compromise more than half of the hardwood stumpage in the south.https://scholarworks.sfasu.edu/forestrybulletins/1021/thumbnail.jp

    Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension

    Get PDF
    The process of neurite extension after activation of the TrkA tyrosine kinase receptor by nerve growth factor (NGF) involves complex signaling pathways. Stimulation of sphingosine kinase 1 (SphK1), the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P), is part of the functional TrkA signaling repertoire. In this paper, we report that in PC12 cells and dorsal root ganglion neurons, NGF translocates SphK1 to the plasma membrane and differentially activates the S1P receptors S1P1 and S1P2 in a SphK1-dependent manner, as determined with specific inhibitors and small interfering RNA targeted to SphK1. NGF-induced neurite extension was suppressed by down-regulation of S1P1 expression with antisense RNA. Conversely, when overexpressed in PC12 cells, transactivation of S1P1 by NGF markedly enhanced neurite extension and stimulation of the small GTPase Rac, important for the cytoskeletal changes required for neurite extension. Concomitantly, differentiation down-regulated expression of S1P2 whose activation would stimulate Rho and inhibit neurite extension. Thus, differential transactivation of S1P receptors by NGF regulates antagonistic signaling pathways that modulate neurite extension

    Probe-dependent negative allosteric modulators of the long-chain free fatty acid receptor FFA4

    Get PDF
    High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein–coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential of free fatty acid receptor 4 (FFA4) as a novel therapeutic target for the treatment of type II diabetes, the broad distribution pattern of this receptor suggests it may play a range of roles beyond glucose homeostasis in different cells and tissues. To date, a single molecule, 4-methyl-N-9H-xanthen-9-yl-benzenesulfonamide (AH-7614), has been described as an FFA4 antagonist; however, its mechanism of antagonism remains unknown. We synthesized AH-7614 and a chemical derivative and demonstrated these to be negative allosteric modulators (NAMs) of FFA4. Although these NAMs did inhibit FFA4 signaling induced by a range of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many anticancer drugs suggests that a novel close chemical analog of AH-7614 devoid of FFA4 activity, 4-methyl-N-(9H-xanthen-9-yl)benzamide (TUG-1387), will also provide a useful control compound for future studies assessing FFA4 function. Using TUG-1387 alongside AH-7614, we show that endogenous activation of FFA4 expressed by murine C3H10T1/2 mesenchymal stem cells is required for induced differentiation of these cells toward a more mature, adipocyte-like phenotype

    Discovery of sisunatovir (RV521), an inhibitor of respiratory syncytial virus fusion

    Get PDF
    RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Observations on a human acid protease with fibrinolytic activity

    Get PDF

    Subtype-specific kinetics of inhibitory adenosine receptor internalization are determined by sensitivity to phosphorylation by G protein-coupled receptor kinases.

    No full text
    Despite coupling to the same class of inhibitory G proteins and binding the same physiological ligand, the human A(1) and rat A(3) adenosine receptors (ARs) desensitize at different rates in response to sustained agonist exposure. This is due to the ability of the A(3)AR, but not the A(1)AR, to serve as a substrate for rapid phosphorylation and desensitization by members of the G protein-coupled receptor kinase (GRK) family. The aim of this study was to investigate whether these differences were also manifested in their abilities to undergo agonist-dependent receptor internalization. For the first time, we report that A(3)ARs internalize profoundly in response to short-term exposure to agonist but not activators of second messenger-regulated kinases. The A(3)AR-selective antagonist MRS1523 blocked both A(3)AR phosphorylation and internalization. Moreover, in contrast to the A(1)AR, which internalized quite slowly (t(1/2) = 90 min), A(3)ARs internalized rapidly (t(1/2) = 10 min) over a time frame that followed the onset of receptor phosphorylation. A nonphosphorylated A(3)AR mutant failed to internalize over a 60-min time course, suggesting that receptor phosphorylation was essential for rapid A(3)AR internalization to occur. In addition, fusion onto the A(1)AR of the A(3)AR C-terminal domain containing the sites for phosphorylation by GRKs conferred rapid agonist-induced internalization kinetics (t(1/2) = 10 min) on the resulting chimeric AR. In conclusion, these data suggest that GRK-stimulated phosphorylation of threonine residues within the C-terminal domain of the A(3)AR is obligatory to observe rapid agonist-mediated internalization of the receptor

    Expression of SphK1 impairs degranulation and motility of RBL-2H3 mast cells by desensitizing S1P receptors

    No full text
    Mast cells play a central role in inflammatory and immediate-type allergic reactions by secreting a variety of biologically active substances, including sphingosine-1 phosphate (S1P). Sphingosine kinase 1 (SphK1) and formation of S1P, which leads to transactivation of S1P receptors and their downstream signaling pathways, regulates mast-cell functions initiated by cross-linking of the high-affinity immunoglobulin E (IgE) receptor FcεRI. Surprisingly, overexpression of SphK1 in rat basophilic leukemia (RBL)-2H3 mast cells impaired degranulation as well as migration toward antigen. These effects were reversed by serum withdrawal, yet the increased formation and secretion of S1P were the same as in the presence of serum. Nonetheless, serum increased localization of SphK1 at the plasma membrane. This restricted formation of S1P induced internalization and desensitization of S1P receptors on the surface of mast cells as determined by confocal immunofluorescence microscopy, aberrant S1P receptor signaling, and lack of S1P receptor coupling to G proteins. Serum starvation, which significantly reduced membrane-associated SphK1 activity, restored S1P receptor functions. Our results have important implications for mast-cell migration and degranulation as well as for the biologic functions of the S1P receptors on cells that are circulating in the bloodstream. (Blood. 2005;105:4736-4742
    corecore