6 research outputs found

    Dynamic scaling in stick-slip friction

    Get PDF
    We introduce a generalized homogeneous function to describe the joint probability density for magnitude and duration of events in self-organized critical systems (SOC). It follows that the cumulative distributions of magnitude and of duration are power-laws with exponents α and τ respectively. A power-law relates duration and magnitude (exponent γ) on the average. The exponents satisfy the dynamic scaling relation α=γτ. The exponents classify SOC systems into universality classes that do not depend on microscopic details provided that both α

    Thermal perturbations caused by large impacts and consequences for mantle convection

    Get PDF
    We examine the effects of thermal perturbations on a convecting layer of incompressible fluid with uniform viscosity in the limit of infinite Prandtl number, for two upper boundary conditions (free- and no-slip) and heat sources (100% volumetric heating and 100% bottom heating) in 2-D Cartesian finite element simulations. Small, low-temperature perturbations are swept into nearby downflows and have almost no effect on the ambient flow field. Large, high-temperature perturbations are rapidly buoyed and flattened, and spread along the layer\u27s upper boundary as a viscous gravity current. The spreading flow severs and displaces downwellings in its path, and also thins and stabilizes the upper thermal boundary layer (TBL), preventing new instabilities from growing until the spreading motion stops. A return flow driven by the spreading current displaces the roots of plumes toward the center of the spreading region and inhibits nascent plumes in the basal TBL. When spreading halts, the flow field is reorganized as convection reinitiates. We obtain an expression for the spreading time scale, ts, in terms of the Rayleigh number and a dimensionless perturbation temperature (Θ), as well as a size (Λ), and a condition that indicates when convection is slowed at a system-wide scale. We also describe a method for calculating the heat deposited by shock waves at the increased temperatures and pressures of terrestrial mantles, and supply estimates for projectile radii in the range 200 to 900 km and vertical incident velocities in the range 7 to 20 km s−1. We also consider potential applications of this work for understanding the history of early Mars

    Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars

    Get PDF
    This paper presents the results of Mars topographic mapping and lander and rover localization for the Opportunity rover at Meridiani Planum during the Mars Exploration Rover (MER) 2003 mission. By Sol 458, the Opportunity rover traversed a distance of 5.20 km. We localized the lander using two-way Doppler radio positioning and cartographic triangulation of craters visible in both orbital and ground images. Additional high-resolution orbital images were taken to verify the determined lander position. Visual odometry and bundle adjustment techniques were applied to overcome wheel slippages, azimuthal angle drift, and other navigation errors (as large as 21% within Eagle crater). In addition, orbit-to-ground image-based adjustment was applied to correct rover location errors where bundle adjustment was not applicable. We generated timely topographic products, including orthoimages, digital terrain models (DTMs), three-dimensional (3-D) crater models, and rover traverse maps. In particular, detailed 3-D terrain models of major features, such as Endurance crater, have been generated using multisite panoramic stereo images based on bundle adjustment and wide baseline stereo technique

    Crater gradation in Gusev crater and Meridiani Planum, Mars

    Get PDF
    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ∼400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters \u3e100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred

    Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia

    Get PDF
    The ca. 1.8 Ga Duck Creek Formation, Western Australia, preserves 1000 m of carbonates and minor iron formation that accumulated along a late Paleoproterozoic ocean margin. Two upward-deepening stratigraphic packages are preserved, each characterized by peritidal precipitates at the base and iron formation and carbonate turbidites in its upper part. Consistent with recent studies of Neoarchean basins, carbon isotope ratios of Duck Creek carbonates show no evidence for a strong isotopic depth gradient, but carbonate minerals in iron formations can be markedly depleted in C-13. In contrast, oxygen isotopes covary strongly with depth; delta O-18 values as positive as 2%. VPDB in peritidal facies systematically decline to values of 6 to 16% in basinal rocks, reflecting, we posit, the timing of diagenetic closure. The Duck Creek Formation contains microfossils similar to those of the Gunflint Formation, Canada; they are restricted to early diagenetic cherts developed in basinal facies, strengthening the hypothesis that such fossils capture communities driven by iron metabolism. Indeed, X-ray diffraction data indicate that the Duck Creek basin was ferruginous throughout its history. The persistence of ferruginous waters and iron formation deposition in Western Australia for at least several tens of millions of years after the transition to sulfidic conditions in Laurentia suggests that the late Paleoproterozoic expansion of sulfidic subsurface waters was globally asynchronous
    corecore