51 research outputs found

    Kin selection, quorum sensing and virulence in pathogenic bacteria

    Get PDF
    Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS).We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory

    A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity

    Get PDF
    The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    Gallium Maltolate Treatment Eradicates Pseudomonas aeruginosa Infection in Thermally Injured Mice▿

    No full text
    Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Gallium's biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe3+), whereby it can replace iron (Fe) in Fe3+-dependent biological systems, such as bacterial and mammalian Fe transporters and Fe3+-containing enzymes. Unlike Fe3+, ionic gallium (Ga3+) cannot be reduced, and when incorporated, it inactivates Fe3+-dependent reduction and oxidation processes that are necessary for bacterial and mammalian cell proliferation. Most pathogenic bacteria require Fe for growth and function, and the availability of Fe in the host or environment can greatly enhance virulence. We examined whether gallium maltolate (GaM), a novel formulation of Ga, had antibacterial activity in a thermally injured acute infection mouse model. Dose-response studies indicated that a GaM dose as low as 25 mg/kg of body weight delivered subcutaneously was sufficient to provide 100% survival in a lethal P. aeruginosa-infected thermally injured mouse model. Mice treated with 100 mg/kg GaM had undetectable levels of Pseudomonas aeruginosa in their wounds, livers, and spleens, while the wounds of untreated mice were colonized with over 108 P. aeruginosa CFU/g of tissue and their livers and spleens were colonized with over 105 P. aeruginosa CFU/g of tissue. GaM also significantly reduced the colonization of Staphylococcus aureus and Acinetobacter baumannii in the wounds of thermally injured mice. Furthermore, GaM was also therapeutically effective in preventing preestablished P. aeruginosa infections at the site of the injury from spreading systemically. Taken together, our data suggest that GaM is potentially a novel antibacterial agent for the prevention and treatment of wound infections following thermal injury

    An in vivo polymicrobial biofilm wound infection model to study interspecies interactions.

    Get PDF
    Chronic wound infections are typically polymicrobial; however, most in vivo studies have focused on monospecies infections. This project was designed to develop an in vivo, polymicrobial, biofilm-related, infected wound model in order to study multispecies biofilm dynamics and in relation to wound chronicity. Multispecies biofilms consisting of both Gram negative and Gram positive strains, as well as aerobes and anaerobes, were grown in vitro and then transplanted onto the wounds of mice. These in vitro-to-in vivo multi-species biofilm transplants generated polymicrobial wound infections, which remained heterogeneous with four bacterial species throughout the experiment. We observed that wounded mice given multispecies biofilm infections displayed a wound healing impairment over mice infected with a single-species of bacteria. In addition, the bacteria in the polymicrobial wound infections displayed increased antimicrobial tolerance in comparison to those in single species infections. These data suggest that synergistic interactions between different bacterial species in wounds may contribute to healing delays and/or antibiotic tolerance

    Peroxisome Proliferator-Activated Receptors Mediate Host Cell Proinflammatory Responses to Pseudomonas aeruginosa Autoinducer▿

    No full text
    The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC12-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC12-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC12-HSL influences host responses is unclear, and no mammalian receptors for 3OC12-HSL have been identified to date. Here, we report that 3OC12-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC12-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) and PPARγ were expressed. 3OC12-HSL functioned as an agonist of PPARβ/δ transcriptional activity and an antagonist of PPARγ transcriptional activity and inhibited the DNA binding ability of PPARγ. The proinflammatory effect of 3OC12-HSL in lung epithelial cells was blocked by the PPARγ agonist rosiglitazone, suggesting that 3OC12-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARγ activity, respectively. These data identify PPARβ/δ and PPARγ as putative mammalian 3OC12-HSL receptors and suggest that PPARγ agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections

    <i>P. aeruginosa</i> makes up the leading edge of the infection.

    No full text
    <p>(A) <i>In vivo</i> biofilms were imaged with FISH. Sections from the wound margins of 12-day-old infected mouse wounds were fixed in formalin, embedded in paraffin, thin-sectioned and mounted on slides. Sections were hybridized to a ‘target’ DNA probe complementary to a specific 16S region of the bacterial ribosomal subunit of either <i>P. aeruginosa</i> (red) or <i>S. aureus</i> (yellow) and stained with DAPI (<i>E. faecalis</i>, <i>F. magna</i>, and host cell DNA), scale = 50 µm. DAPI-stained host cell nuclei in the uninfected dermis are visible in the top right, followed by a polymicrobial-infected layer of the wound eschar, which is bordered by a layer of predominately <i>P. aeruginosa</i> extending into the wound bed. ‘Budding’ projections were visualized in the wound sections from 12-day-old polymicrobial infected mice by H&E (B) and FISH (C), scale = 10 µm. These projections extended from the leading edge of the wound margin, into the wound bed and hybridized to the <i>P. aeruginosa</i> 16S FISH probe (see in red, C).</p

    Homogeneous ‘pockets’ of bacteria were visualized along the wound margin of 12-day-old infected wounds.

    No full text
    <p>Wound tissue was fixed in formalin, embedded in paraffin, thin-sectioned and either stained with H&E (A) or hybridized to species-specific FISH probes (B), where <i>P. aeruginosa</i> is shown in red, <i>S. aureus</i> in yellow, and <i>E. faecalis</i>, <i>F. magna</i>, and host cell DNA are stained with DAPI (blue), scale = 10 µm.</p
    corecore