85 research outputs found

    Efficient LiDAR-trajectory affinity model for autonomous vehicle orchestration.

    Get PDF
    Computation and memory resource management strategies are the backbone of continuous object tracking in intelligent vehicle orchestration. Multi-object tracking generates enormous measurements of targets and extended object positions using light detection and ranging (Lidar) sensors. Designing an adequate object-tracking system is a global challenge because of dynamic object detection and data association uncertainties during scene understanding. In this regard, we develop an intelligent multi-objective tracking (IMOT) system with a novel measurement model, called the box data association inflate (BDAI) model, to assess each target's object state and trajectory without noise by using the Bayesian approach. The box object filter method filters ambiguous detection responses during data association. The theoretical proof of the box object filter is derived based on binomial expansion. Prognosticating a lower-dimension object than the original point object reduces the computational complexity of vehicle orchestration. Two datasets (NuScenes dataset and our lab dataset) are considered during the simulations, and our approach measures the kinematic states adequately with reduced computation complexity compared to state-of-the-art methods. The simulation outcomes show that our proposed method is effective and works well to detect and track objects. The NuScenes dataset contains 28130 samples for training, 6019 examples for validation and 6008 samples for testing. IMOT achieves 58.09% tracking accuracy and 71% mAP with 5 ms pre-processing time. The Jetson Xavier NX consumes 49.63% GPU and 9.37% average power and exhibits 25.32 ms latency compared to other approaches. Our system trains a single pair frame in 169.71 ms with affinity estimation time of 12.19 ms, track association time of 0.19 ms and mATE of 0.245 compared to state-of-the-art approaches

    Atypical Avian Influenza (H5N1)

    Get PDF
    We report the first case of avian influenza in a patient with fever and diarrhea but no respiratory symptoms. Avian influenza should be included in the differential diagnosis for patients with predominantly gastrointestinal symptoms, particularly if they have a history of exposure to poultry

    HLA-Associated Immune Pressure on Gag Protein in CRF01_AE-Infected Individuals and Its Association with Plasma Viral Load

    Get PDF
    BACKGROUND: The human leukocyte antigen (HLA)-restricted cytotoxic T-lymphocyte (CTL) immune response is one of the major factors determining the genetic diversity of human immunodeficiency virus (HIV). There are few population-based analyses of the amino acid variations associated with the host HLA type and their clinical relevance for the Asian population. Here, we identified HLA-associated polymorphisms in the HIV-1 CRF01_AE Gag protein in infected married couples, and examined the consequences of these HLA-selected mutations after transmission to HLA-unmatched recipients. METHODOLOGY/PRINCIPAL FINDINGS: One hundred sixteen HIV-1-infected couples were recruited at a government hospital in northern Thailand. The 1.7-kb gag gene was amplified and directly sequenced. We identified 56 associations between amino acid variations in Gag and HLA alleles. Of those amino acid variations, 35 (62.5%) were located within or adjacent to regions reported to be HIV-specific CTL epitopes restricted by the relevant HLA. Interestingly, a significant number of HLA-associated amino acid variations appear to be unique to the CRF01_AE-infected Thai population. Variations in the capsid protein (p24) had the strongest associations with the viral load and CD4 cell count. The mutation and reversion rates after transmission to a host with a different HLA environment varied considerably. The p24 T242N variant escape from B57/58 CTL had a significant impact on the HIV-1 viral load of CRF01_AE-infected patients. CONCLUSIONS/SIGNIFICANCE: HLA-associated amino acid mutations and the CTL selection pressures on the p24 antigen appear to have the most significant impact on HIV replication in a CRF01_AE-infected Asian population. HLA-associated mutations with a low reversion rate accumulated as a footprint in this Thai population. The novel HLA-associated mutations identified in this study encourage us to acquire more extensive information about the viral dynamics of HLA-associated amino acid polymorphisms in a given population as effective CTL vaccine targets

    Solution Structures of the Acyl Carrier Protein Domain from the Highly Reducing Type I Iterative Polyketide Synthase CalE8

    Get PDF
    Biosynthesis of the enediyne natural product calicheamicins γ1I in Micromonospora echinospora ssp. calichensis is initiated by the iterative polyketide synthase (PKS) CalE8. Recent studies showed that CalE8 produces highly conjugated polyenes as potential biosynthetic intermediates and thus belongs to a family of highly-reducing (HR) type I iterative PKSs. We have determined the NMR structure of the ACP domain (meACP) of CalE8, which represents the first structure of a HR type I iterative PKS ACP domain. Featured by a distinct hydrophobic patch and a glutamate-residue rich acidic patch, meACP adopts a twisted three-helix bundle structure rather than the canonical four-helix bundle structure. The so-called ‘recognition helix’ (α2) of meACP is less negatively charged than the typical type II ACPs. Although loop-2 exhibits greater conformational mobility than other regions of the protein with a missing short helix that can be observed in most ACPs, two bulky non-polar residues (Met992, Phe996) from loop-2 packed against the hydrophobic protein core seem to restrict large movement of the loop and impede the opening of the hydrophobic pocket for sequestering the acyl chains. NMR studies of the hydroxybutyryl- and octanoyl-meACP confirm that meACP is unable to sequester the hydrophobic chains in a well-defined central cavity. Instead, meACP seems to interact with the octanoyl tail through a distinct hydrophobic patch without involving large conformational change of loop-2. NMR titration study of the interaction between meACP and the cognate thioesterase partner CalE7 further suggests that their interaction is likely through the binding of CalE7 to the meACP-tethered polyene moiety rather than direct specific protein-protein interaction

    Prevention of type 2 diabetes and its complications in developing countries: a review.

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant global public health problem affecting more than 285 million people worldwide. Over 70% of those with T2DM live in developing countries, and this proportion is increasing annually. Evidence suggests that lifestyle and other nonpharmacological interventions can delay and even prevent the development of T2DM and its complications; however, to date, programs that have been specifically adapted to the needs and circumstances of developing countries have not been well developed or evaluated. PURPOSE: The purpose of this article is to review published studies that evaluate lifestyle and other non-pharmacological interventions aimed at preventing T2DM and its complications in developing countries. METHODS: We undertook an electronic search of MEDLINE, PubMed, and EMBASE with the English language restriction and published until 30 September 2009. RESULTS: Nine relevant publications from seven studies were identified. The reported interventions predominantly used counseling and educational methods to improve diet and physical activity levels. Each intervention was found to be effective in reducing the risk of developing T2DM in people with impaired glucose tolerance, and improving glycemic control in people with T2DM. CONCLUSIONS: The current evidence concerning the prevention of T2DM and its complications in developing countries has shown reasonably consistent and positive results; however, the small number of studies creates some significant limitations. More research is needed to evaluate the benefits of low-cost screening tools, as well as the efficacy, cost-effectiveness, and sustainability of culturally appropriate interventions in such countries

    A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis

    Get PDF
    Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules

    Enhancing EFL learners' willingness to communicate through MMORPG participation

    No full text
    Abstract not available
    corecore