3,887 research outputs found

    Presence of Treponema denticola and Porphyromonas gingivalis in Children Correlated with Periodontal Disease of Their Parents

    Full text link
    Considerable evidence exists suggesting that periodontal disease is due to the overgrowth of a finite number of specific bacteria such as Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Treponema denticola, Bacteroides forsythus, and Prevotella intermedia, among others. Three of these organisms-P. gingivalis, T. denticola, and B. forsythus—can be easily detected in plaque samples by the hydrolysis of the synthetic trypsin substrate benzoyl-DL-arginine-naphthylamide (BANA). The aim of the present study was to determine if a relationship could be found between the presence of either these organisms or periodontitis in the parent and the presence of BANA-positive species in the child. Thirty-four mothers or fathers and 34 children were examined for plaque scores, papillary bleeding scores, and the presence of P. gingivalis and T. denticola in four subgingival or marginal gingival plaque samples as assayed by the BANA test or specific polyclonal antibodies using an ELISA. Children whose parents were colonized by BANA-positive bacteria were 9.8 times more likely to be colonized by these BANA-positive species. Children whose parents had clinical evidence of periodontitis were 12 times more likely to be colonized by these BANA-positive species. These data are compatible with the hypothesis that children may acquire the BANA-positive species from their parents, especially if the parent has periodontitis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68201/2/10.1177_00220345940730100801.pd

    Faster subsequence recognition in compressed strings

    Full text link
    Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related to Lempel--Ziv compression. For an SLP-compressed text of length mˉ\bar m, and an uncompressed pattern of length nn, C{\'e}gielski et al. gave an algorithm for local subsequence recognition running in time O(mˉn2logn)O(\bar mn^2 \log n). We improve the running time to O(mˉn1.5)O(\bar mn^{1.5}). Our algorithm can also be used to compute the longest common subsequence between a compressed text and an uncompressed pattern in time O(mˉn1.5)O(\bar mn^{1.5}); the same problem with a compressed pattern is known to be NP-hard

    Cross-domain neurobiology data integration and exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions.</p> <p>Results</p> <p>Our work integrates molecular level data with high level biological functions and we present results using anatomical structure as a scaffold. Our solution also allows the sharing of intermediate data exploration results with other web applications, greatly increasing the power of cross-domain data exploration and mining.</p> <p>Conclusions</p> <p>The Flex-based PubAnatomy web application we developed enables highly interactive visual exploration of literature and experimental data for understanding the relationships between molecular level changes, pathways, brain circuits and pathophysiological processes. The prototype of PubAnatomy is freely accessible at:[<url>http://brainarray.mbni.med.umich.edu/Brainarray/prototype/PubAnatomy</url>]</p

    Real-time dynamic modelling for the design of a cluster-randomized phase 3 Ebola vaccine trial in Sierra Leone.

    Get PDF
    BACKGROUND: Declining incidence and spatial heterogeneity complicated the design of phase 3 Ebola vaccine trials during the tail of the 2013-16 Ebola virus disease (EVD) epidemic in West Africa. Mathematical models can provide forecasts of expected incidence through time and can account for both vaccine efficacy in participants and effectiveness in populations. Determining expected disease incidence was critical to calculating power and determining trial sample size. METHODS: In real-time, we fitted, forecasted, and simulated a proposed phase 3 cluster-randomized vaccine trial for a prime-boost EVD vaccine in three candidate regions in Sierra Leone. The aim was to forecast trial feasibility in these areas through time and guide study design planning. RESULTS: EVD incidence was highly variable during the epidemic, especially in the declining phase. Delays in trial start date were expected to greatly reduce the ability to discern an effect, particularly as a trial with an effective vaccine would cause the epidemic to go extinct more quickly in the vaccine arm. Real-time updates of the model allowed decision-makers to determine how trial feasibility changed with time. CONCLUSIONS: This analysis was useful for vaccine trial planning because we simulated effectiveness as well as efficacy, which is possible with a dynamic transmission model. It contributed to decisions on choice of trial location and feasibility of the trial. Transmission models should be utilised as early as possible in the design process to provide mechanistic estimates of expected incidence, with which decisions about sample size, location, timing, and feasibility can be determined

    Frequent burning promotes invasions of alien plants into a mesic African savanna

    Get PDF
    Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    &lt;b&gt;BACKGROUND:&lt;/b&gt; Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. &lt;b&gt;DESCRIPTION:&lt;/b&gt; The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. &lt;b&gt;CONCLUSION:&lt;/b&gt; Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem
    corecore