44,657 research outputs found

    Validation of a Temperate Fourth Planet in the K2-133 Multi-planet System

    Full text link
    We present follow-up observations of the K2-133 multi-planet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here we report on the validation of the presence of the fourth planet, determining a radius of 1.73−0.13+0.141.73_{-0.13}^{+0.14} R⊕_{\oplus}. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the stars temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.Comment: Accepted for publication in MNRA

    Three small transiting planets around the M dwarf host star LP 358-499

    Full text link
    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a Gigayear. The three detected planets K2-133 b, c, and d have orbital periods of ca. 3, 4.9 and 11 days and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate in the system (EPIC 247887989.01) with a period of 26.6 days and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.Comment: Accepted for publication in MNRAS Letters. Replaced previous arXiv version with final submitted versio

    The impact of stochastic physics on climate sensitivity in EC-Earth

    Full text link
    Stochastic schemes, designed to represent unresolved sub-grid scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the 'stochastically perturbed parametrisation tendencies' scheme (SPPT) in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback, and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's non-linear interaction with condensation.Comment: Under review in Journal of Geophysical Research: Atmosphere

    Advanced Computer Dormant Reliability Study Final Report

    Get PDF
    Reliability of integrated circuits and discrete components of electronics for computer and dormant module for Minuteman

    Possible isotopic fractionation effects in sputtered minerals

    Get PDF
    A model which makes definite predictions for the fractionation of isotopes in sputtered material is discussed. The fractionation patterns are nonlinear, and the pattern for a particular set of isotopes depends on the chemical matrix within which those isotopes are contained. Calculations are presented for all nonmonoisotopic elements contained in the minerals perovskite, anorthite, ackermanite, enstatite, and troilite. All isotopes are fractionated at the level of approximately 4-6 deg/o per atomic mass unit. Oxygen is always positively fractionated (heavier isotopes sputtered preferentially), and heavier elements are generally negatively fractioned (light isotopes sputtered preferentially). The value of Delta (O-18:O-16) is always less by about 1.8 deg/o than a linear extrapolation based upon the calculated delta (O-17:O-16) value would suggest. The phenomenon of both negative and positive fractionation patterns from a single target mineral are used to make an experimental test of the proposed model

    High Redshift Standard Candles: Predicted Cosmological Constraints

    Get PDF
    We investigate whether future measurements of high redshift standard candles (HzSCs) will be a powerful probe of dark energy, when compared to other types of planned dark energy measurements. Active galactic nuclei and gamma ray bursts have both been proposed as potential HzSC candidates. Due to their high luminosity, they can be used to probe unexplored regions in the expansion history of the universe. Information from these regions can help constrain the properties of dark energy, and in particular, whether it varies over time. We consider both linear and piecewise parameterizations of the dark energy equation of state, w(z)w(z), and assess the optimal redshift distribution a high-redshift standard-candle survey could take to constrain these models. The more general the form of the dark energy equation of state w(z)w(z) being tested, the more useful high-redshift standard candles become. For a linear parameterization of w(z)w(z), HzSCs give only small improvements over planned supernova and baryon acoustic oscillation measurements; a wide redshift range with many low redshift points is optimal to constrain this linear model. However to constrain a general, and thus potentially more informative, form of w(z)w(z), having many HzSCs can significantly improve limits on the nature of dark energy.Comment: Accepted MNRAS, 27 Pages, 15 figures, matches published versio

    Estimating the masses of extra-solar planets

    Get PDF
    All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. It is, however, possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P_rot) and the stellar radius (R_star). This allows the removal of the sin i dependency of spectroscopically derived extra-solar planet masses under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis. We have carried out an extensive literature search and present a catalogue of v sin i, P_rot, and R_star estimates for exoplanet host stars. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R_star estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper 1-sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined. While a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P_rot estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of ~90 degrees and high transit probabilities. In total, we estimate the true masses of 133 extra-solar planets. Of these, only 6 have revised masses that place them above the 13 Jupiter mass deuterium burning limit. Our work reveals a population of high-mass planets with low eccentricities and we speculate that these may represent the signature of different planetary formation mechanisms at work.Comment: 40 pages, 6 tables, 2 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Society after editing of Tables 1 & 6 for electronic publication. Html abstract shortened for astro-ph submissio

    Denoising Autoencoders for fast Combinatorial Black Box Optimization

    Full text link
    Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered problem instances, DAE-EDA is considerably faster than BOA and RBM-EDA, sometimes by orders of magnitude. The number of fitness evaluations is higher than for BOA, but competitive with RBM-EDA. These results show that DAEs can be useful tools for problems with low but non-negligible fitness evaluation costs.Comment: corrected typos and small inconsistencie

    The XMM-Newton spectral-fit database

    Full text link
    The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.Comment: Conference proceedings of IAU Symposium 304: Multiwavelength AGN surveys and studie
    • …
    corecore