41,947 research outputs found

    Moduli Stabilization with the String Higgs Effect

    Get PDF
    We review the notion of the Higgs effect in the context of string theory. We find that by including this effect in time dependent backgrounds, one is led to a natural mechanism for stabilizing moduli at points of enhanced gauge symmetry. We consider this mechanism for the case of the radion (size of the extra dimensions) and find that as decompactification of the large spatial dimensions takes place the radion will remain stabilized at the self dual radius. We discuss how this mechanism can be incorporated into models of string cosmology and brane inflation to resolve some outstanding problems. We also address some issues regarding which string states should be included when constructing low energy actions in string cosmology.Comment: 20 pages, references added, typos correcte

    Geologic application of thermal-inertia mapping from satellite

    Get PDF
    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located

    The Efficacy of Group Selection is Increased by Coexistence Dynamics within Groups

    No full text
    Selection on the level of loosely associated groups has been suggested as a route towards the evolution of cooperation between individuals and the subsequent formation of higher-level biological entities. Such group selection explanations remain problematic, however, due to the narrow range of parameters under which they can overturn within-group selection that favours selfish behaviour. In principle, individual selection could act on such parameters so as to strengthen the force of between-group selection and hence increase cooperation and individual fitness, as illustrated in our previous work. However, such a process cannot operate in parameter regions where group selection effects are totally absent, since there would be no selective gradient to follow. One key parameter, which when increased often rapidly causes group selection effects to tend to zero, is initial group size, for when groups are formed randomly then even moderately sized groups lack significant variance in their composition. However, the consequent restriction of any group selection effect to small sized groups is derived from models that assume selfish types will competitively exclude their more cooperative counterparts at within-group equilibrium. In such cases, diversity in the migrant pool can tend to zero and accordingly variance in group composition cannot be generated. In contrast, we show that if within-group dynamics lead to a stable coexistence of selfish and cooperative types, then the range of group sizes showing some effect of group selection is much larger

    String Gas Cosmology

    Get PDF
    We present a critical review and summary of String Gas Cosmology. We include a pedagogical derivation of the effective action starting from string theory, emphasizing the necessary approximations that must be invoked. Working in the effective theory, we demonstrate that at late-times it is not possible to stabilize the extra dimensions by a gas of massive string winding modes. We then consider additional string gases that contain so-called enhanced symmetry states. These string gases are very heavy initially, but drive the moduli to locations that minimize the energy and pressure of the gas. We consider both classical and quantum gas dynamics, where in the former the validity of the theory is questionable and some fine-tuning is required, but in the latter we find a consistent and promising stabilization mechanism that is valid at late-times. In addition, we find that string gases provide a framework to explore dark matter, presenting alternatives to Λ\LambdaCDM as recently considered by Gubser and Peebles. We also discuss quantum trapping with string gases as a method for including dynamics on the string landscape.Comment: 55 pages, 1 figure, minor corrections, version to appear in Reviews of Modern Physic

    Dynamical decompactification from brane gases in eleven-dimensional supergravity

    Full text link
    Brane gas cosmology provides a dynamical decompactification mechanism that could account for the number of spacetime dimensions we observe today. In this work we discuss this scenario taking into account the full bosonic sector of eleven-dimensional supergravity. We find new cosmological solutions that can dynamically explain the existence of three large spatial dimensions characterised by an universal asymptotic scaling behaviour and a large number of initially unwrapped dimensions. This type of solutions enlarge the possible initial conditions of the Universe in the Hagedorn phase and consequently can potentially increase the probability of dynamical decompactification from anisotropically wrapped backgrounds.Comment: 8 figures, JHEP3 styl

    Target space duality and moduli stabilization in String Gas Cosmology

    Full text link
    Motivated by string gas cosmology, we investigate the stability of moduli fields coming from compactifications of string gas on torus with background flux. It was previously claimed that moduli are stabilized only at a single fixed point in moduli space, a self-dual point of T-duality with vanishing flux. Here, we show that there exist other stable fixed points on moduli space with non-vanishing flux. We also discuss the more general target space dualities associated with these fixed points.Comment: 12 pages, 1 figur

    Geologic applications of thermal-inertia mapping from satellite

    Get PDF
    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed

    Effective Field Theory Approach to String Gas Cosmology

    Get PDF
    We derive the 4D low energy effective field theory for a closed string gas on a time dependent FRW background. We examine the solutions and find that although the Brandenberger-Vafa mechanism at late times no longer leads to radion stabilization, the radion rolls slowly enough that the scenario is still of interest. In particular, we find a simple example of the string inspired dark matter recently proposed by Gubser and Peebles.Comment: 19 pages, 2 figures, comments adde

    Geologic application of thermal-inertia mapping from satellite

    Get PDF
    The author has identified the following significant results. Approximately 400 miles of low altitude scanner data of good quality was acquired over the Powder River Basin between 13-16 Oct. 1978. Radiometric and meteorological data from three ground stations were also acquired in support of low altitude U.S.G.S. overflights
    corecore