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Moduli Stabilization with the String Higgs Effect

Scott Watson∗

Physics Department, Brown University, Providence RI 02912 USA.
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Abstract

We review the notion of the Higgs effect in the context of string theory. We find that by

including this effect in time dependent backgrounds, one is led to a natural mechanism for

stabilizing moduli at points of enhanced gauge symmetry. We consider this mechanism for the

case of the radion (size of the extra dimensions) and find that as decompactification of the

large spatial dimensions takes place the radion will remain stabilized at the self dual radius.

We discuss how this mechanism can be incorporated into models of string cosmology and brane

inflation to resolve some outstanding problems. We also address some issues regarding which

string states should be included when constructing low energy actions in string cosmology.

PACS numbers:
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I. INTRODUCTION

Superstring theory predicts the existence of a number of massless scalar fields, known

as moduli fields. These fields are troublesome for both string theory and string cosmology.

From the string theory perspective they represent flat directions leading to a degeneracy

in the vacuum state for the string, i.e. string theory fails to determine its own vacuum

configuration. From the perspective of cosmology these massless scalars are problematic

because they would have dramatic effects on the cosmological evolution, which seem to

be in contradiction with observation. One resolution to the so-called cosmological moduli

problem is to address these issues through considering models of string cosmology. In this

way, one may argue that the real vacuum state is chosen among the many possibilities by

considering the cosmological evolution.

One attempt at such a construction occurs in models of string gas cosmology, also

known as brane gas cosmology (BGC)[1]. In these models, in addition to the massless

modes of the string, one includes the massive modes in the form of a gas of string winding

and momentum modes through their stress energy tensor. One can then show that the

radion, the modulus giving the overall size of the extra dimensions, is fixed near the

string scale by the cosmological evolution [2, 3]. Although these results are promising, it

is somewhat inconsistent to include the massive modes into a low energy effective theory.

Moreover, it was shown in [4] that at late times, when the dynamics are described by

the 4D effective theory, stabilization will only remain for the special case of one extra

dimension. Both of these problems present serious challenges for models of BGC.

Another method for fixing moduli has been considered in flux compactifications of

Type IIB string theory [5]. In these models it is possible to fix nearly all of the moduli by

introducing fluxes wrapping the cycles of the Calabi-Yau. Moreover, it has been possible

to construct slow roll inflation models in the warped geometry background where the role

of the inflaton is played by the separation of the D3 brane in the bulk and a stack of D̄3

branes at an IR fixed point [6]. One drawback of these models is the method for stabilizing
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the size of the extra dimensions seems to be incompatible with slow-roll inflation. It was

suggested in [6] that this problem might be alleviated by considering additional methods

for stabilizing the radion (size of the extra dimensions). The method we present here,

motivates low energy corrections that should be added to the Kahler potential and results

in an additional method for stabilizing the radion.

In this paper we consider the realization of the string Higgs effect in cosmology. We

take as our starting point the massless modes of the string as described by the low en-

ergy effective action. We then find that there exists a critical radius at which there are

additional massless modes. As one moves away from this point of enhanced gauge sym-

metry (ESP) one finds that these particles gain a mass in a manner analogous to that

of electroweak symmetry breaking. By including the backreaction of these additional

modes on the evolution, along with the damping of the cosmological expansion, we find a

method for stabilizing the radion. This is similar to work recently discussed in [7], where

in that paper the example was that of a two brane system and the ESP was related to

the inter-brane separation.

In Section II, we discuss the necessary string theory background for constructing the

cosmological model of interest. We review string compactifications from both the space-

time and string worldsheet conformal field theory (CFT) perspectives. We focus on the

low energy spectrum and hope to convince the reader that one needs to be cautious when

including string matter into low energy effective actions. In particular, we demonstrate

that for a generic radius of compactification, no winding or momentum states should be

present in the spectrum. We then consider the spectrum near an ESP, where the gauge

theory of the string is enriched by additional massless states. This is an example of the

Higgs effect in string theory [8] and when combined with a time dependent or cosmological

background will result in interesting consequences. In particular, we demonstrate in

Section III that by considering the additional massless states created at the ESP we can

arrive at a natural mechanism for stabilizing the moduli of the theory. In this case the

modulus of interest will be the radion, i.e. the radius of the extra dimensions, and by
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considering the production of massless string modes we find a natural way to dynamically

determine the overall size of the extra dimensions. We will conclude with some brief

remarks on how this work could be incorporated into current models of string cosmology.

II. STRING COMPACTIFICATIONS

In this section, we review the low energy effective action for the string, focusing on the

bosonic or Neveu-Schwarz (NS) degrees of freedom. We want to focus in particular on

which additional modes could in principle be added to the low energy action. We consider

the additional modes that arise from compactification, or perhaps more appropriately

from decompactification of the large 3 + 1 space-time. We find that many of these modes

become massless near so-called enhanced symmetry points (ESP). We will see that this

results in a natural example of the Higgs effect in string theory [8] and including these

modes back into the effective action results in non-trivial effects for the evolution of the

radion.

We take as our starting point the low energy effective action for the NS-NS sector of

the string in D = 4 + d space-time dimensions (for a review see [11]),

SD =
1

2κ2
0

∫

d4+dx
√
−G e−2Φ

(

RD + 4(∇Φ)2 − 1

12
H2 + O(α′)

)

+ O(gs), (1)

where HMNP = ∇[MBNP ] is the three form flux, Φ is the dilaton, and GMN is the D

dimensional metric with M, N = 0 . . .D−1. The constant κ2
0 is at this stage an arbitrary

constant that can be redefined by a shift of the dilaton. This action represents a double

perturbative expansion in both the string tension α′ ∼ l2s and the string coupling g2
s = e2Φ.

We should only trust this action for a large radius of curvature (l2s ≪ Rc) and weak

coupling (gs ≪ 1). In particular, if we wish to add string matter to the action we should

respect these low energy and large radius approximations.

From the perspective of the worldsheet (CFT), the action (1) ensures that the world-

sheet couplings GMN , BMN , and Φ are scale invariant by the vanishing of their renormal-
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ization group β functions [12]. These couplings appear in the worldsheet action which is

described by the nonlinear sigma model

S0 =
1

πα′

∫

d2z
[

GMN(X) + BMN(X)
]

∂XM ∂̄XN + α′R(2)Φ(X), (2)

where R(2) is the worldsheet Ricci scalar, XM are the worldsheet fields, and ∂ (∂̄) is

the left (right) derivative on the 2d worldsheet. One finds that by demanding the β

functions vanish for these couplings, we regain their usual equations of motion, where we

intepret the couplings as the low energy supergravity fields in the target space. The CFT

approach can be used to calculate S-matrix elements by expanding the couplings about

their classical values,

GMN = G
(0)
MN + h̃MN ,

BMN = B
(0)
MN + b̃MN ,

Φ = Φ(0) + Φ̃, (3)

where the perturbations h̃MN , b̃MN , and Φ̃ represent the specific string states of the

graviton, antisymmetric tensor, and the dilaton, respectively. One can then include other

string states by inserting additional vertex operators O(z, z̄) with (left, right) conformal

dimension (1,1) which represent marginal deformations of the CFT,

S0 −→ S ′ = S0 + λ

∫

d2zO(z, z̄). (4)

These marginal deformations take one CFT S0 into another S ′, providing a connected

set of CFTs that all represent the same physical theory [13]. This neighborhood around

the CFT fixed point makes up the moduli space and the couplings of these marginal

operators are the moduli. The motion of the moduli are then given by their RG flow,

where λ represents the infinitesimal motion. One problem of string theory is to determine a

vacuum expectation value (VEV) for each field (or worldsheet coupling), thus fixing these

moduli to some unique value. If we attempt to do this by including additional matter,

we have argued that this should respect the low energy approximation. In the CFT, this
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means that the additional fields must correspond to exactly marginal deformations. So

we see that by demanding conformal invariance and working in an effective theory, there

are very tight constraints on the possibilities of adding additional matter. In particular,

if we are to consider additional string states they should be nearly massless. We will see

that such states arise after compactification and at special points in the moduli space.

Motivated by the Brandenberger-Vafa scenario [14], we now consider the decompact-

ification of four dimensions resulting in M4 × Kd where K remains compactified and

M4 corresponds to an Friedmann-Robertson-Walker (FRW) or time dependent cosmo-

logical background 1. We assume that the four dimensions have expanded enough so

that the curvature scale of M4 is much larger than the scale of the compact dimensions

(i.e. R
(4)
c >> R

(d)
c ). In this limit, the low energy degrees of freedom are given by the

dimensionally reduced action,

S =
1

2κ2
4

∫

d4x
√−g e−2ϕ

[

R + 4(∇ϕ)2 +
1

4
∇µhab∇µhab −

1

4
FµνaFµνa

− 1

12
HµνλH

µνλ − 1

4
HµνaH

µνa − 1

4
HµabH

µab − 1

12
HabcH

abc

]

, (5)

where M, N = 0 . . . (D−1) refer to the full space-time, µ, ν = 0 . . . 3 denote the M4 direc-

tions, and a, b, c = 4 . . . (D− 1) denote the compact dimensions of K. The D dimensional

metric is given by,

GMN =





gµν + habAµ
aAb

ν Aµb

Aνa hab



 , (6)

and we have introduced the four dimensional dilaton ϕ ≡ Φ − 1
2
ln det hab and 2κ2

4 =

16πG = 2πα′g2
s . The compactification of BMN follows analogous to (6) with BD

µν = Bµν +

habB
a
µBb

ν . In general, we will be interested in internal metrics of the form hab = α′e2σδab.

1 More precisely, in [14] the geometry was taken as R × T 3 × T 6 where T n is the n torus. At late

times, when the T 3 has grown large the geometry is approximately M4 ×Kd where M4 is Minkowski

space-time.
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A. String Spectrum on M4 × S1

We now consider the case of one extra dimension with metric G55 = α′e2σ, where σ is

the radion and we approximate the large dimensions as Minkowski space-time M4. We

make this assumption for simplicity and note that our main results can be extended to

more general cases, such as the d = 6 compactification of the Heterotic string. The action

(5) simplifies to

S =
1

2κ2
4

∫

d4x
√−g e−2ϕ

(

R+4(∂ϕ)2−(∂σ)2−1

4
e2σFµνFµν−1

4
e−2σBµνB

µν− 1

12
H2

)

, (7)

where Hµνλ = ∂[µBνλ] is the flux in four dimensions and Fµν contains the usual Kaluza-

Klein (KK) vectors of mass m2 = n2

R2 resulting from the compactified metric i.e., Gµ5. In

addition, we also get another U(1) from the compactification of the higher dimensional

antisymmetric two form Bµ5 resulting in the winding states with m2 = ω2R2

α′2 .

We can also see these states arising from the more fundamental worldsheet action (2).

Assuming the couplings don’t depend on the extra dimension we find that the reduced

action becomes

S4p =
1

πα′

∫

d2z
[

Gµν(X) + Bµν(X)
]

∂Xµ∂̄Xν +
[

Gµ5(X) + Bµ5(X)
]

∂̄Xµ∂X5

+
[

Gµ5(X) − Bµ5(X)
]

∂Xµ∂̄X5 + G55(X)∂X5∂̄X5 + α′R(2)Φ(X), (8)

where R ≡ G
1/2
55 =

√
α′eσ is the radius of the extra dimension. To manifest the chiral

symmetry (right and left currents move independently on the string), we can define

Aµ ≡ ALeft
µ =

1

2

(

Gµ5 + Bµ5

)

,

Āµ ≡ ARight
µ =

1

2

(

Gµ5 − Bµ5

)

. (9)

The mass of a string state is found by enforcing conformal symmetry mode by mode

and results in the Virasoro constraints [12],

M2 =
n2

R2
+

ω2R2

α′2 +
2

α′ (N + N̄ − 2),

nω + N − N̄ = 0, (10)
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where the integers n and ω label the momentum and winding charge and N (N̄) correspond

to the number of left (right) oscillators that are excited. We are interested in the massless

states and we can see from (10) that for generic radii this means we are restricted to the

states

n = ω = 0 N = N̄ = 1. (11)

The effective lagrangian representing the additional degrees of freedom from the string

compactification takes form

Lm = (∂σ)2 − 1

4g2
(FµνF

µν) − 1

4g2
(F̄µνF̄

µν), (12)

with

Fµν = ∂[µAν] F̄µν = ∂[µĀν], (13)

and the scalar is neutral and comes from N = N̄ = 1 being taken in the compact direction.

Thus, we have a UL(1) × UR(1) chiral gauge theory resulting from the compactification,

along with the neutral scalar σ giving the overall scale of the extra dimension. This

doubling of the usual KK spectrum is an example of how strings lead to an enrichment of

the usual symmetries. In summary, we have found that the low energy physics is described

by dilaton gravity coupled to a UL(1) × UR(1) chiral gauge theory with a neutral scalar

field.

As in the uncompactified case, we are interested in the fluctuations about the back-

ground values. For the new states resulting from compactification we have the lower

dimensional analogs of (3) along with the new states

Aµ = A(0)
µ + A(3)

µ ,

Āµ = Ā(0)
µ + Ā(3)

µ ,

G55 = α′(1 + φ(33)), (14)

where the first term on the right is the background value. Our notation for the left

(right) going vector perturbation A
(3)
µ (Ā

(3)
µ ) and scalar perturbation φ(33) will become
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clear shortly. The vertex operators corresponding to the insertion of these states are

given by

V (3) = A(3)
µ ∂X5∂̄Xµ,

V̄ (3) = Ā(3)
µ ∂Xµ∂̄X5,

V (33) = φ(33)∂X5∂̄X5. (15)

Note that these operator insertions correspond to the same states that appeared in the

space-time matter lagrangian (12). We can identify φ(33) with a perturbation of the

compact radius away from the self dual radius and then φ(33) = 0 corresponds to R =
√

α′.

For σ ≪ 1 we find σ ∼ φ(33) ∼ δR gives the departure from the self dual radius.

Let us consider the simple string background Gµν = ηµν , Bµν = 0, and Φ = Φ0.

As we have discussed, the low energy approximation requires the fluctuations in (15) to

correspond to exactly marginal operators and be primary fields of dimension (1, 1). This

requirement implies that they must obey the following equations [8],

�φ(33) = �A(3)
µ = �Ā(3)

µ = 0 ∂µA(3)
µ = ∂µĀµ = 0. (16)

Once again we see that by demanding conformal invariance we obtain the expected equa-

tions of motion for the fields that would have followed from (12) with the covariant choice

of the Lorentz gauge. We also see from these equations, it is clear that there is nothing

to determine the VEV of φ(33). This is a simple example of the inability of string theory

to predict a unique vacuum of the theory. That is, each value of 〈φ(33)〉 corresponds to a

different choice of vacuum for the same string theory. From the perspective of cosmology

this implies that the radion φ(33) is not stabilized in the low energy theory. This can be

understood from (12), where we saw that with n = ω = 0, the radion φ(33) is uncharged

under the UL(1) × UR(1) and there is nothing to fix the scale. One might expect that

including the winding and momentum modes could change this result, but we have seen

that restricting to the low energy spectrum eliminates states that carry winding and mo-
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mentum charge. We will now see that this does not necessarily remain true if we consider

regions of the moduli space near special radii, so-called ESPs.

B. Enhanced Gauge Symmetry

Upon examining the mass spectrum given by (10), we see that at the special radius

R =
√

α′ there is a possibility of additional massless states.

These correspond to four new vectors,

N = 0 N̄ = 1 n = ω = ±1 V (±) = A(±)
µ ∂̄Xµ exp

(

±i
2√
α′

X5
)

,

N = 1 N̄ = 0 n = −ω = ±1 V̄ (±) = Ā(±)
µ ∂Xµ exp

(

±i
2√
α′

X̄5
)

, (17)

four massless scalars, where N or N̄ are taken in the compact direction

N = 0 N̄ = 1 n = ω = ±1 V (±3) = φ(±3)∂̄X5 exp
(

±i
2√
α′

X5
)

,

N = 1 N̄ = 0 n = −ω = ±1 V (3±) = φ(3±)∂X5 exp
(

±i
2√
α′

X̄5
)

, (18)

and four massless scalars that are purely winding and purely momentum charged states

N = N̄ = ω = 0 n = ±2 V (±±) = φ(±±) exp
(

±i 2√
α′

X5
)

exp
(

±i 2√
α′

X̄5
)

,

N = N̄ = n = 0 ω = ±2 V (±∓) = φ(±∓) exp
(

±i 2√
α′

X5
)

exp
(

∓i 2√
α′

X̄5
)

. (19)

This concludes the massless spectrum at the ESP R =
√

α′. We see that it is now

consistent to include states with nontrivial winding and momentum into the low energy

spectrum. These additional vectors (17) fill out the adjoint representation of SUL(2) ×
SUR(2) enhancing the previous symmetry from UL(1) × UR(1). The eight scalars (18)

and (19) combine with φ(33) to transform as the (3,3) adjoint representation of the gauge

group. The T-duality that is usually associated with winding/momentum states can

now be realized as a gauge rotation by π in one of the SU(2)’s which sends φ(33) to

−φ(33) or R to α′/R. Thus, T-duality arises from the action of a Z2 subgroup of the full
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SUL(2) × SUR(2) symmetry. This is an example of the fact that duality holds in the

nonperturbative regime, since the gauge theory approach will remain valid there [13].

The requirement that these fields maintain conformal invariance, being primary oper-

ators of dimension (1,1), is

�A(i) = �Ā(i) = �φij = 0 ∂νAi
ν = ∂νĀi

ν = 0, (20)

where i, j = +,−, 3. These are the expected equations resulting from (12) after lifting

the theory to SUL(2) × SUR(2) and restricting to the self dual radius, i.e. 〈φ(33)〉 = 0.

The field strength (13) is now given by the Yang-Mills theory

F i
µν = ∂µAi

ν − ∂νA
i
µ + gǫijkAj

µA
k
ν , (21)

F̄ i
µν = ∂µĀi

ν − ∂νĀ
i
µ + gǫijkĀj

µĀ
k
ν , (22)

and the scalars couple through the (i,0) and (0,j) gauge covariant derivatives

(Dµφ)a = ∂µφ
a + gǫabcAb

µφc, (23)

(D̄µφ)a = ∂µφ
a + gǫabcĀb

µφc, (24)

where the coupling g is of O(1) for the states we are considering2.

C. Higgs Mechanism in String Theory

We have seen that at the ESP (i.e. R =
√

α′) the gauge symmetry is enhanced to

SUL(2) × SUR(2). Let us consider the mass of the states (17), (18), and (19) away from

R =
√

α′. We find

M =
|R2 − α′|

Rα′ =
2√
α′
| sinh(σ)|, (25)

2 For example, for the heterotic string the four dimensional gauge coupling is given by g2 = 4κ2/α′,

where κ is the gravitational length and contains the dilaton expectation value. One can usually choose

these values so that g is order one, which is expected from the Yang-Mills theory. This implies that

the string scale is close to the gravitation scale. For a complete discussion see [12].
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where we have used R =
√

α′eσ. Thus, we see that if the radion has a vanishing VEV

these states remain massless, whereas if φ(33) 6= 0 the states become massive. This is an

example of the Higgs Mechanism in string theory, where the role of the Higgs is played by

the radion φ(33). We can see the Higgs mechanism explicitly from (23) and (24). Consider

the (i,0) covariant derivative for the scalar φ(+3),

Dµφ(+3) = ∂µφ(+3) + gǫ+bcAb
µφ

c,

= ∂µφ(+3) + g
(

A−
µ φ(33) − A3

µφ
(−3)

)

. (26)

As usual, we can perform a gauge rotation to fix the VEV of φ in the (3, 3) direction

〈φ(33)〉 = δR and through the kinetic term this gives a mass to the vector A
(−)
µ ,

1

2
(Dµφ

(+3))2 −→ 1

2
g2〈φ(33)〉2(A−

µ )2 =
1

2
g2δR2(A−

µ )2. (27)

Through this and the other covariant derivative terms the four vectors A± and Ā±
µ get

masses through their couplings to φ(33), while the A
(3)
µ and Ā

(3)
µ remain massless. Thus,

we see that the SUL(2) × SUR(2) is broken to UL(1) × UR(1). As we have discussed, it

is problematic in string theory to determine δR2, since no potential exists for the scalars

φ. However, we argue in what follows that by considering the time dependence of the

background, one is naturally led to a cosmological mechanism that breaks this degeneracy.

III. AN EFFECTIVE POTENTIAL FOR RADION STABILIZATION

We saw in the last section that the Higgs mechanism arises naturally in string theory

near ESPs. In the simple S1 compactification we considered, we found that the low energy

degrees of freedom evolved in accordance with dilaton gravity coupled to a chiral gauge

theory UL(1)×UR(1). This was true at generic radii and we found that there was no scale

to fix the VEV of the radion. We also found that near the ESP (i.e. R =
√

α′) extra

states (17), (18), and (19) became massless and we should include these states and their
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interactions in the effective theory 3.

This suggests the following model for stabilizing the radion near the ESP. Initially the

radion σ begins at a generic point in the moduli space and the correct theory is that of

dilaton gravity coupled to the UL(1)×UR(1) massless degrees of freedom. We assume the

dilaton has been fixed4 and we consider the late time cosmology in an homogeneous and

isotropic universe with metric,

ds2
4 = −dt2 + e2λ(t)d~x2, (28)

where λ(t) = ln a(t) is the scale factor. The effective action for generic σ is given by

Seff =

∫

d4x
√

g
[

R − 1

2
(∂σ)2 − Veff

]

, (29)

where Veff initially represents the contribution from the chiral U(1)s, although near the

self dual radius it should incorporate the effects due to the additional massless states.

Let us consider the background equations of motion first neglecting the backreaction

near the ESP. The equations following from (29) are

3λ̇2 =
1

2
σ̇2 + ρsub (30)

2λ̈ + 3λ̇2 = −1

2
σ̇2 − psub (31)

σ̈ + 3λ̇σ̇ =
∂Veff

∂σ
, (32)

where ρsub and psub represent the subdominant contribution from the UL(1)×UR(1) con-

tained in Veff at generic radii. This contribution will be subdominant at early times,

since the kinetic term has an equation of state ρ = p and thus scales as ρ = a−6. The

3 Similar considerations were addressed from the supergravity perspective for the case of the heterotic

string on K3 × S1 and K3 × T 2 in [9] and [10], respectively.
4 Since we are interested in late time cosmology, we will assume that the dilaton has already been

stabilized. We anticipate this could be done either by fluxes, wrapped branes, or perhaps even by a

variation of the mechanism we will describe.
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corresponding scale factor is a(t) ∼ t1/3 and λ̇ = 1/3t. In this limit we can ignore the

potential in (32) and σ is given for small t as

σ(t) = σ0 + v0t. (33)

We start the time evolution at t = 0 when the field is closest to R =
√

α′, thus we see

that σ0 is a measure of how close the radion comes to the ESP. In [2], it was shown that

by including the dilaton in the dynamics, along with the winding and momentum modes

of the string, the radion will naturally pass through σ = 0 and be localized around the

ESP5. Motivated by this result we assume that σ0 = 0, which is the most efficient case

for particle production, since the states will be exactly massless there.

We proceed to address particle creation in a way analogous to the treatment in models

of inflationary preheating [18], where here the role of the inflaton will be played by the

radion. Since we are really discussing the creation of strings, one might wonder if we

are justified in taking this approach. It was shown in [19] that string production can be

considered in this way. There it was shown that it is enough to consider the production

of strings, mode by mode, in the effective field theory approach. Using this approach we

can think of each string mode as a scalar field with a time varying mass.

For example, let us consider the effects of producing one of the additional massless

vectors that appears at the ESP. From the coupling in (27) we see that the additional

states would lead to a potential

Veff(σ, Aµ) =
1

2
(∂µAν)

2 − 1

2
g2σ2AµA

µ, (34)

where we have defined Aµ ≡ A
(−)
µ and we work in the Lorentz gauge ∂µAµ = 0. Note

that we are neglecting the other Yang-Mills interactions, as these would lead to the same

generic dynamics for σ. However, it would be interesting to include these interactions

5 This result was for the full 10D theory in the string frame. We note that this result came from trusting

the low energy effective action while including the massive modes of the string. This seems to be an

issue that requires further attention.
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in future work, as they are examples coming directly from string theory of the type of

interactions recently considered in [20] as dark matter candidates.

From (34), we can identify m(t)2 = g2σ2 as a time dependent mass for Aµ. As σ

approaches the ESP, the Aµ’s become massless and easy to create. Then, as σ leaves

the ESP these states will become massive resulting in backreaction and producing an

attractive force pulling σ back towards the ESP.

Let us consider the time dependent frequency of a particular Fourier mode Aµ
k

ωk(t) =

√

~k2 + g2σ2(t). (35)

A particular mode becomes excited when the non-abiabaticity parameter satisfies ω̇/ω2 ≥
1. When this condition holds for a particular mode, it results in particle production and

an occupation number

nk = exp

(

−π~k2 + g2σ2
0

gv0

)

. (36)

Recall that we can take σ0 = 0 and g in our case is a positive constant of order unity

coming from the coupling of the winding and momentum modes. The energy density of

produced particles is given by

ρA =

∫

d3k

(2π)3
nkωk ≈ g|σ(t)|N, (37)

with N ∼ (gv0)
3/2. Thus, comparing this to (30) we see that the initial kinetic energy

associated with the radion 1
2
v2
0 is dumped into production of Aµ particles as the radion

passes through the ESP. Given a large enough v0, the radion will continue its trajectory

and the modes will become massive as we have seen. This results in an always attractive

force of magnitude gN pointing the radion back towards the ESP. The effective equation

for σ including the backreaction is then given by

σ̈ + 3λ̇σ̇ = −gN(t). (38)

This process will continue with each pass of the radion, until all of its initial kinetic

energy has been used up and it settles to the self dual radius. Therefore, we are led to
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the conclusion that the additional states associated with the enhanced symmetry result

in a fixed value for the radion at the self dual radius.

One immediate concern might be whether this method is stable to perturbations.

Moreover, one could worry that the initial kinetic energy of the radion is so high that

the force associated with the backreaction is not enough to over come its inertia. Both

of these problems are overcome by considering the Hubble friction associated with the

second term in (38). One expects this friction to damp out any perturbations and should

actually enhance the stabilization mechanism. This was discussed in models of string

gas cosmology [4] and a similar conclusion was reached in [7]. Moreover, it was shown

in [4] that once we switch to the effective theory the Hubble friction is enough to keep

the radion evolving slowly compared to the growth of the three large dimensions. We

conclude that Hubble friction combined with the ESP backreaction should be more than

adequate to stabilize the radion at the self dual radius.

IV. CONCLUSIONS

We have found that by considering the string Higgs effect it is possible to generate a

potential for the radion resulting from the backreaction of the additional low energy states

that emerge at the ESP. These low energy states carry both winding and momentum

charge, justifying their inclusion in low energy effective actions where the dimensions

are taken initially to be near the self dual radius. This includes models of Brane Gas

Cosmology, which address the issue of stabilization of extra dimensions from the higher

dimensional perspective [2, 3]. This complements our approach here, where we have

demonstrated the stabilization from the lower dimensional perspective without the help

of the dilaton.

When considering the inclusion of these additional modes we have neglected much of

the richness of the nonabelian gauge theory. That is, we focused on the coupling of the

vectors and radion arising from the covariant derivatives in (12), but we have neglected

16



the interactions and self interactions of the fields. Including these additional interactions

would be interesting for a number of reasons. They offer a concrete way to include the

interactions of winding and momentum modes into models of Brane Gas Cosmology.

Including additional interactions would also offer an example, coming directly from string

theory, of the dark matter candidates recently proposed in [20].

Finally, it would be interesting to see if this mechanism can be combined with models

of flux compactifications. As we mentioned in the introduction, these compactifications

can fix all the moduli in principle, however the fixing of the overall scale of the extra

dimensions seems incompatible with inflation [6]. Since this is precisely the radion, in

principle, the two methods could be combined to fix all the moduli. One problem that

prevents this from immediately being realized is that in these models one usually works

in Type IIB theory and the compactification manifold is taken to be of the Calabi-Yau

type. These manifolds are chosen because they offer the most realistic particle spectrum

for Type IIB theories. In addition, they possess SU(3) holonomy, which implies that the

low energy string spectrum does not admit one cycles. As a result there is not an ESP

corresponding to the self-dual radius and the methods we have suggested in this paper

need not apply. However, our methods do readily apply to toriodal compactifications

of the Heterotic string and work is currently underway to explore the additional role of

fluxes. It will be interesting to see if slow-roll brane inflation can be realized in such a

picture.

In closing, we hope the reader has been left with the idea that enhanced symmetry

combined with cosmological evolution presents a viable mechanism for fixing moduli, but

is in need of further study.
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