34,901 research outputs found

    Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    Get PDF
    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented

    Microscopic resolution broadband dielectric spectroscopy

    Get PDF
    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin

    Spectra of Maser Radiation from a Turbulent, Circumnuclear Accretion Disk. III. Circular polarization

    Get PDF
    Calculations are performed for the circular polarization of maser radiation from a turbulent, Keplerian disk that is intended to represent the sub-parsec disk at the nucleus of the galaxy NGC4258. The polarization in the calculations is a result of the Zeeman effect in the regime in which the Zeeman splitting is much less than the spectral linebreadth. Plausible configurations for turbulent magnetic and velocity fields in the disk are created by statistical methods. This turbulence, along with the Keplerian velocity gradients and the blending of the three hyperfine components to form the 6165236_{16} - 5_{23} masing transition of water, are key ingredients in determining the appearance of the polarized spectra that are calculated. These spectra are quite different from the polarized spectra that would be expected for a two-level transition where there is no hyperfine structure. The effect of the hyperfine structure on the polarization is most striking in the calculations for the maser emission that represents the central (or systemic) features of NGC4258. Information about magnetic fields is inferred from observations for polarized maser radiation and bears on the structure of accretion disks.Comment: Latex, uses aastex, eucal, to be published in the Astrophysical Journa

    Characterising exo-ringsystems around fast-rotating stars using the Rossiter-McLaughlin effect

    Get PDF
    Planetary rings produce a distinct shape distortion in transit lightcurves. However, to accurately model such lightcurves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky projected angle of the ring system. For slow rotating stars, this mainly impacts the amplitude of the induced velocity shift, however, for fast rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modeling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW\delta W) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ\gamma) relative to the stellar rotation velocity (vv sinii, i.e. δW/Rv\delta W / R_* \gtrsim vsinii/γ\gamma). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.Comment: Accepted for publication in MNRA
    corecore