1,725 research outputs found

    The Scope of Review over Courts-Martial on Habeas Corpus

    Get PDF

    The Scope of Review over Courts-Martial on Habeas Corpus

    Get PDF

    Epidemiology of Fracture Nonunion in 18 Human Bones

    Get PDF
    Importance Failure of bone fracture healing occurs in 5% to 10% of all patients. Nonunion risk is associated with the severity of injury and with the surgical treatment technique, yet progression to nonunion is not fully explained by these risk factors. Objective To test a hypothesis that fracture characteristics and patient-related risk factors assessable by the clinician at patient presentation can indicate the probability of fracture nonunion. Design, Setting, and Participants An inception cohort study in a large payer database of patients with fracture in the United States was conducted using patient-level health claims for medical and drug expenses compiled for approximately 90.1 million patients in calendar year 2011.The final database collated demographic descriptors, treatment procedures as per Current Procedural Terminology codes; comorbidities as per International Classification of Diseases, Ninth Revision codes; and drug prescriptions as per National Drug Code Directory codes. Logistic regression was used to calculate odds ratios (ORs) for variables associated with nonunion. Data analysis was performed from January 1, 2011, to December 31, 2012, Exposures Continuous enrollment in the database was required for 12 months after fracture to allow sufficient time to capture a nonunion diagnosis. Results The final analysis of 309 330 fractures in 18 bones included 178 952 women (57.9%); mean (SD) age was 44.48 (13.68) years. The nonunion rate was 4.9%. Elevated nonunion risk was associated with severe fracture (eg, open fracture, multiple fractures), high body mass index, smoking, and alcoholism. Women experienced more fractures, but men were more prone to nonunion. The nonunion rate also varied with fracture location: scaphoid, tibia plus fibula, and femur were most likely to be nonunion. The ORs for nonunion fractures were significantly increased for risk factors, including number of fractures (OR, 2.65; 95% CI, 2.34-2.99), use of nonsteroidal anti-inflammatory drugs plus opioids (OR, 1.84; 95% CI, 1.73-1.95), operative treatment (OR, 1.78; 95% CI, 1.69-1.86), open fracture (OR, 1.66; 95% CI, 1.55-1.77), anticoagulant use (OR, 1.58; 95% CI, 1.51-1.66), osteoarthritis with rheumatoid arthritis (OR, 1.58; 95% CI, 1.38-1.82), anticonvulsant use with benzodiazepines (OR, 1.49; 95% CI, 1.36-1.62), opioid use (OR, 1.43; 95% CI, 1.34-1.52), diabetes (OR, 1.40; 95% CI, 1.21-1.61), high-energy injury (OR, 1.38; 95% CI, 1.27-1.49), anticonvulsant use (OR, 1.37; 95% CI, 1.31-1.43), osteoporosis (OR, 1.24; 95% CI, 1.14-1.34), male gender (OR, 1.21; 95% CI, 1.16-1.25), insulin use (OR, 1.21; 95% CI, 1.10-1.31), smoking (OR, 1.20; 95% CI, 1.14-1.26), benzodiazepine use (OR, 1.20; 95% CI, 1.10-1.31), obesity (OR, 1.19; 95% CI, 1.12-1.25), antibiotic use (OR, 1.17; 95% CI, 1.13-1.21), osteoporosis medication use (OR, 1.17; 95% CI, 1.08-1.26), vitamin D deficiency (OR, 1.14; 95% CI, 1.05-1.22), diuretic use (OR, 1.13; 95% CI, 1.07-1.18), and renal insufficiency (OR, 1.11; 95% CI, 1.04-1.17) (multivariate P < .001 for all). Conclusions and Relevance The probability of fracture nonunion can be based on patient-specific risk factors at presentation. Risk of nonunion is a function of fracture severity, fracture location, disease comorbidity, and medication use

    On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems

    Full text link
    We present an iterative method to obtain approximations to Bessel functions of the first kind Jp(x)J_p(x) (p>1p>-1) via the repeated application of an integral operator to an initial seed function f0(x)f_0(x). The class of seed functions f0(x)f_0(x) leading to sets of increasingly accurate approximations fn(x)f_n(x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree ss, it yields a polynomial of degree s+2s+2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f0(x)=1f_0(x)=1. This set of polynomials is not only useful for the computation of Jp(x)J_p(x), but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.Comment: 14 pages, 4 figures. To be published in J. Phys. A: Math. Theo

    Building professional discourse in emerging markets: Language, context and the challenge of sensemaking

    Get PDF
    Using ethnographic evidence from the former Soviet republics, this article examines a relatively new and mainly unobserved in the International Business (IB) literature phenomenon of communication disengagement that manifests itself in many emerging markets. We link it to the deficiencies of the local professional business discourse rooted in language limitations reflecting lack of experience with the market economy. This hampers cognitive coherence between foreign and local business entities, adding to the liability of foreignness as certain instances of professional experience fail to find adequate linguistic expression, and complicates cross-cultural adjustments causing multi-national companies (MNCs) financial losses. We contribute to the IB literature by examining cross-border semantic sensemaking through a retrospectively constructed observational study. We argue that a relative inadequacy of the national professional idiom is likely to remain a feature of business environment in post-communist economies for some time and therefore should be factored into business strategies of MNCs. Consequently, we recommend including discursive hazards in the risk evaluation of international projects

    Optimal Cross-Wind Towing and Power Generation with Tethered Kites

    Full text link
    Non-powered flight vehicles such as kites can provide a means of transmitting wind energy from higher altitudes to the ground via tethers. Although there have been many proposals for systems to extract wind energy from higher altitudes, this paper focuses on the use of a light lifting body at the end of a tether to generate useful power. Two major configurations are studied: 1) the kite is used to tow a ground vehicle in the cross-wind direction, 2) the kite is flown to generate power using a ground generator. In both cases, the useful work done by the kite is transmitted to the ground through the tether. Both applications require automatic control of the kite. A simplified system model is used to study the nature of the optimal trajectories of the system for different wind speeds. Numerical results illustrate that optimal power generation requires complex three-dimensional kite trajectories, whereas cross-wind towing requires much simpler trajectories. A feedback tracking controller is demonstrated for tracking the kite trajectories in the presence of unsteady winds

    Dense 4D nanoscale reconstruction of living brain tissue

    Get PDF
    Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue
    corecore