2,553 research outputs found

    Multi-epoch infrared photometry of the star forming region G173.58+2.45

    Full text link
    We present a multi-epoch infrared photometric study of the intermediate-mass star forming region G173.58+2.45. Photometric observations are obtained using the near-infrared JHKL′M′JHKL'M' filters and narrow-band filters centered at the wavelengths of H2_2 (1-0) S(1) (2.122 μ\mum) and [FeII] (1.644 μ\mum) lines. The H2_2 image shows molecular emission from shocked gas, implying the presence of multiple star formation and associated outflow activity. We see evidence for several collimated outflows. The most extended jet is at least 0.25 pc in length and has a collimation factor of ∼\sim 10, which may be associated with a binary system within the central cluster, resolved for the first time here. This outflow is found to be episodic; probably occurring or getting enhanced during the periastron passage of the binary. We also find that the variable star in the vicinity of the outflow source, which was known as a FU Ori type star, is probably not a FU Ori object. However, it does drive a spectacular outflow and the variability is likely to be related to accretion, when large clouds of gas and dust spiral in towards the central source. Many other convincing accretion-outflow systems and YSO candidates are discovered in the field.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    The Dark Side of Galaxy Color: evidence from new SDSS measurements of galaxy clustering and lensing

    Full text link
    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.Comment: references added, minor adjustments to text and notatio

    The Dark Side of Galaxy Color

    Full text link
    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and color C occupy dark matter halos. Our model supposes that there are just two fundamental properties of a halo that determine the color and brightness of the galaxy it hosts: the maximum circular velocity Vmax, and the redshift z_starve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property z_starve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy color is in monotonic correspondence with z_starve, with the larger values of z_starve being assigned redder colors. We populate an N- body simulation with a mock galaxy catalog based on age distribution matching, and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, SDSS M_r <-19 mock galaxy catalog, and main progenitor histories of all z=0 halos, at http://logrus.uchicago.edu/~aphearinComment: One new figure; expanded discussion of HOD; conclusions unchanged; version accepted by MNRA

    A pinned-pinned beam with and without a distributed foundation: A simple exact relationship between their eigenvalues

    Get PDF
    The body of this paper considers a pinned-pinned Bernoulli-Euler beam, from which the core natural frequencies and critical buckling loads corresponding to in-plane flexure, can be determined easily. The theory is then developed to yield an exact relationship between the static axial load in the beam and the frequency of vibration. This enables the core eigenvalues to be related exactly to their counterparts when the beam is additionally supported on a two parameter elastic foundation.The relationship is simple, exact and obviates the complex problems involved in solving the foundation problem using more traditional techniques. A number of illustrative problems are solved to confirm the accuracy and efficacy of the approach

    Supplementary data for the article: Vulović, B.; Cinderella, A. P.; Watson, D. A. Palladium-Catalyzed Cross-Coupling of Monochlorosilanes and Grignard Reagents. ACS Catalysis 2017, 7 (12), 8113–8117. https://doi.org/10.1021/acscatal.7b03465

    Get PDF
    Supplementary material for: [https://doi.org/10.1021/acscatal.7b03465]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/3923]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3925

    Chimpanzees prioritise social information over pre-existing behaviours in a group context but not in dyads

    Get PDF
    Funding: John Templeton Foundation (US) (40128).How animal communities arrive at homogeneous behavioural preferences is a central question for studies of cultural evolution. Here, we investigated whether chimpanzees (Pan troglodytes) would relinquish a pre-existing behaviour to adopt an alternative demonstrated by an overwhelming majority of group mates; in other words, whether chimpanzees behave in a conformist manner. In each of five groups of chimpanzees (N = 37), one individual was trained on one method of opening a two-action puzzle box to obtain food, while the remaining individuals learned the alternative method. Over 5 h of open access to the apparatus in a group context, it was found that 4/5 ‘minority’ individuals explored the majority method and three of these used this new method in the majority of trials. Those that switched did so after observing only a small subset of their group, thereby not matching conventional definitions of conformity. In a further ‘Dyad’ condition, six pairs of chimpanzees were trained on alternative methods and then given access to the task together. Only one of these individuals ever switched method. The number of observations that individuals in the minority and Dyad individuals made of their untrained method was not found to influence whether or not they themselves switched to use it. In a final ‘Asocial’ condition, individuals (N = 10) did not receive social information and did not deviate from their first-learned method. We argue that these results demonstrate an important influence of social context upon prioritisation of social information over pre-existing methods, which can result in group homogeneity of behaviour.Publisher PDFPeer reviewe

    Spatial search by quantum walk

    Full text link
    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order sqrt(N) for d>2, and in time of order sqrt(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous time quantum walk on a graph. The case of the complete graph gives the continuous time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that sqrt(N) speedup can also be achieved on the hypercube. We show that full sqrt(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order sqrt(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup.Comment: v2: 12 pages, 4 figures; published version, with improved arguments for the cases where the algorithm fail

    The Evolutionary Status of SS433

    Get PDF
    We consider possible evolutionary models for SS 433. We assume that common-envelope evolution is avoided if radiation pressure is able to expel most of a super-Eddington accretion flow from a region smaller than the accretor's Roche lobe. This condition is satisfied, at least initially, for largely radiative donors with masses in the range 4-12 solar masses. For donors more massive than about 5 solar masses, moderate mass ratios q = M_2/M_1 > 1 are indicated, thus tending to favor black-hole accretors. For lower mass donors, evolutionary considerations do not distinguish between a neutron star or black hole accretor. In all cases the mass transfer (and mass loss) rates are much larger than the likely mass-loss rate in the precessing jets. Almost all of the transferred mass is expelled at radii considerably larger than the jet acceleration region, producing the "stationary" H-alpha line, the infrared luminosity, and accounting for the low X-ray luminosity.Comment: 13 pages, Astrophysical Journal Letters, accepte
    • …
    corecore