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Introduction

The body of this paper considers a pinned-pinned Bernoulli-Euler beam, from which the core nat-
ural frequencies and critical buckling loads corresponding to in-plane flexure, can be determined
easily. The theory is then developed to yield an exact relationship between the static axial load in
the beam and the frequency of vibration. This enables the core eigenvalues to be related exactly to
their counterparts when the beam is additionally supported on a two parameter elastic foundation.
The relationship is simple, exact and obviates the complex problems involved in solving the foun-
dation problem using more traditional techniques. A number of illustrative problems are solved to
confirm the accuracy and efficacy of the approach.

Theory

Consider first the exact, fourth order differential equation governing the harmonic motion of an
axially loaded Bernoulli-Euler beam of length, L, that is supported on a two parameter, distributed
foundation, whose transverse and rotational restraining stiffnesses per unit length are ky and kθ ,
respectively. The resulting equation is well known, can be deduced easily from Howson and
Watson [1] and can be written in the following non-dimensional form

[D4 + p∗2D2 −b∗2]V = 0 (1)

where D = d/dξ , ξ = x/L is the non-dimensional length parameter and V is the amplitude of the
transverse displacement

p∗2 = p2 − k∗θ
2b∗2 = b2 − k∗y

2 (2)

p2 = PL2/EIk∗θ = kθ L2/EIb2 = ρAL4
ω

2/EIk∗y = kyL4/EI (3)

ρ and E are the density and Young’s modulus of the member material respectively, A and I are the
area and second moment of area of the cross-section, ω is the radian frequency of vibration and
P is the static axial load in the member, which is positive for compression, zero, or negative for
tension. Equations (2) and (3) establish the non-dimensional member parameters p2 and b2, which
uniquely define the member effects of static axial load and frequency, respectively [2,3], together
with p∗2 and b∗2 which define their interaction with the non-dimensional foundation parameters.

Imposing pinned-pinned boundary conditions enables Equation (1) to be solved by assuming a
general solution of the form

V =C sin(iπξ ) m = 1,2, . . . ,∞ (4)



where C is an arbitrary constant, V defines the modal (displaced) shape, which also satisfies the
boundary conditions. Substituting for V in Equation (1) then yields

(iπ)4 − p∗2(iπ)2 −b∗2 = 0 (5)

or
b∗2/(iπ)4 + p∗2/(iπ)2 = 1 (6)

It is now helpful to introduce the notion of ‘member environment’ which, for the remainder of
this paper, will be defined as follows. An environment will relate to either vibration or buckling
and can be established by allocating constant values to the appropriate independent parameters in
Equation (6). The core vibration environment will be defined by p2 = k∗y = k∗

θ
= 0 and will yield

the classical natural frequency parameters

bc,i = (iπ)2 i = 1,2, . . . ,∞ (7)

In similar fashion, the core buckling environment will be defined by b2 = k∗y = k∗
θ
= 0 and will

yield the classical buckling parameters

pc,i = (iπ) i = 1,2, . . . ,∞ (8)

and hence that
bc,i = p2

c,i i = 1,2, . . . ,∞ (9)

A further result of this is to enable Equation (6) to be written as

b∗2/b2
c,i + p∗2/p2

c,i = 1 (10)

It is interesting to note in passing that solutions to Equation (10) will lie on the arc of an ellipse
when b∗2 and p∗2 are both positive and on the arc of the adjoining hyperbola when they are of
opposite sign. Simpler solutions prevail, of course, when one or other of them is zero. Equation
(10) can now be used to model a range of vibration or buckling problems in which any appropriate
combination of the non-dimensional effects can be neglected by setting the relevant parameter to
zero.

Discussion and numerical examples

The remainder of this paper now seeks to highlight aspects of Equation (10) while demonstrating
its simplicity and effectiveness when applied to practical structures. This is best achieved by
expanding it out in symbolic form to its most general vibration and buckling environments, as
given in Equation (11), respectively, i.e.

b2
i = b2

c,i[1− (p2/p2
c,i)]+ [(b2

c,i/p2
c,i)k

∗
θ + k∗y ] i = 1,2, . . . ,∞ (11)

and hence that

p2
i = p2

c,i[1− (b2/b2
c,i)]+ [(p2

c,i/b2
c,i)k

∗
y + k∗θ ] i = 1,2, . . . ,∞ (12)

where the subscript i has now been introduced on the dependent variable to denote modal rank,
since there will be an infinite number of solutions for each new environment created.

Consider first the asymmetric relationship between Equations (11), which can be put into context
as follows. Assume a vibration environment in which ky = kθ = 0 and p2 = 0.4p2

c,1. Then from



Table 1: Relationship given by Equations (11) between the core eigenvalues and their counterparts
in the required environment.

Environment Modal Rank Core Eigenvalues Solution
k∗y k∗

θ
p2 i p2

c,i b2
c,i p2

i
Vibration 80 0 0 1 9.86960 97.4091 177.409

80 0 0 3 88.8264 7890.14 7970.14
0 50 −1 2 39.4784 1558.55 3571.94

80 50 −1 1 9.86960 97.4091 680.759
Buckling 80 0 0 1 9.86960 97.4091 17.9753

0 50 0 2 39.4784 1558.55 89.4784
80 50 0 4 157.914 24936.7 208.420

Equation (11) the frequency of vibration that would reduce the member stiffness to zero would
correspond to b2

1 = 0.6b2
c,1. A similar buckling environment could be written as ky = kθ = 0 and

b2 = 0.6b2
c,1 then from Equation (12) the compressive axial load that would reduce the member

stiffness to zero would correspond to p2
1 = 0.4p2

c,1. The same problem is thus solved both through
a vibration and a buckling context. Closer inspection of Equations (11) enable a number of helpful
points to be made. Firstly, it is clear that b2

i and p2
i must always be zero or positive and that the

values of b2 and p2 shape their respective (constant) environments. Hence, when k∗y = k∗
θ
= 0;

0 ≤ b2 ≤ b(c,1)2 and p2 ≤ p(c,1)2. When k∗y > 0 and/or k∗
θ
> 0, the values of b2(≥ 0) and

p2 are only (additionally) constrained by the requirement that b2
i and p2

i remain positive in their
respective environments. More generally it is clear that in both vibration and buckling problems,
the rotational stiffness becomes more influential as the modal rank increases. The data for the
remaining examples are given below so that the hand solutions developed from Equations (11) and
given in Table 1 can be checked by alternative means.

E = 2.0×1011N/m2 I = 1.6×10−5m4 ρ = 8×103kg/m3 A= 10−2m2 L = 4m
ky = 106N/m2 kθ = 107N P = 2×105N for compression and negative for tension.

The problem parameters and solutions are given in Table 1 below.

Conclusions

A simple formula that can be manipulated easily by hand and which can predict exactly the change
in core eigenvalues of a simple pinned-pinned beam to their counterparts in any other allowable
environment has been presented and its efficacy demonstrated.
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