10 research outputs found

    Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans

    Get PDF
    Denitrification is a microbial pathway that constitutes an important part of the nitrogen cycle on earth. Denitrifying organisms use nitrate as a terminal electron acceptor and reduce it stepwise to nitrogen gas, a process that produces the toxic nitric oxide (NO) molecule as an intermediate. In this work, we have investigated the possible functional interaction between the enzyme that produces NO; the cd1 nitrite reductase (cd1NiR) and the enzyme that reduces NO; the c-type nitric oxide reductase (cNOR), from the model soil bacterium P. denitrificans. Such an interaction was observed previously between purified components from P. aeruginosa and could help channeling the NO (directly from the site of formation to the side of reduction), in order to protect the cell from this toxic intermediate. We find that electron donation to cNOR is inhibited in the presence of cd1NiR, presumably because cd1NiR binds cNOR at the same location as the electron donor. We further find that the presence of cNOR influences the dimerization of cd1NiR. Overall, although we find no evidence for a high-affinity, constant interaction between the two enzymes, our data supports transient interactions between cd1NiR and cNOR that influence enzymatic properties of cNOR and oligomerization properties of cd1NiR. We speculate that this could be of particular importance in vivo during metabolic switches between aerobic and denitrifying conditions

    Lipogenesis and redox balance in nitrogen-fixing pea bacteroids

    Get PDF
    Within legume root nodules, rhizobia differentiate into bacteroids that oxidise host-derived dicarboxylic acids, which is assumed to occur via the TCA-cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory grown Rhizobium leguminosarum showed that the flux from 13C-succinate was consistent with respiration of an obligate aerobe growing on a TCA-cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady state labelling under N2-fixing conditons. Therefore, comparitive metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA-cycle was shown to be essential for maximal rates of N2-fixation, pyruvate (5.5-fold down), acetyl-CoA (50-fold down), free coenzyme A (33-fold) and citrate (4.5-fold down) were much lower in bacteroids. Instead of completely oxidising acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type II PHB synthase that is only active in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA-cycle with its storage in PHB and lipids

    Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    Get PDF
    In order to predict accurately how elevated atmospheric CO2 concentrations will affect the global carbon cycle, it is necessary to know how trees respond to increasing CO2 concentrations. In this paper we examine the response over the period AD 1895 – 1994 of three tree species growing across northern Europe to increases in atmospheric CO2 concentrations using parameters derived from stable carbon isotope ratios of trunk cellulose. Using the isotope data we calculate values of intrinsic water-use efficiency (IWUE) and intercellular CO2 concentrations in the leaf (ci). Our results show that trees have responded to higher levels of atmospheric CO2 by increasing IWUE whilst generally maintaining constant ci values. However, the IWUE of most of the trees in this study has not continued to rise in line with increasing atmospheric CO2. This behaviour has implications for estimations of future terrestrial carbon storage

    The role of wetland coverage within the near-stream zone in predicting of seasonal stream export chemistry from forested headwater catchments

    No full text
    Stream chemistry is often used to infer catchment-scale biogeochemical processes. However, biogeochemical cycling in the near-stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near-stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole-catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16-year average seasonal flow-weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO 3 -N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south-central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO 3 -N concentrations improved when only the proportion of wetland within the near-stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydro

    Nitric Oxide and Reactive Nitrogen Oxide Species in Plants

    No full text
    corecore