104 research outputs found

    Severe Acute Respiratory Syndrome Coronavirus Evades Antiviral Signaling: Role of nsp1 and Rational Design of an Attenuated Strain

    Get PDF
    The severe acute respiratory syndrome (SARS) epidemic was caused by the spread of a previously unrecognized infectious agent, the SARS-associated coronavirus (SARS-CoV). Here we show that SARS-CoV could inhibit both virus- and interferon (IFN)-dependent signaling, two key steps of the antiviral response. We mapped a strong inhibitory activity to SARS-CoV nonstructural protein 1 (nsp1) and show that expression of nsp1 significantly inhibited the activation of all three virus-dependent signaling pathways. We show that expression of nsp1 significantly inhibited IFN-dependent signaling by decreasing the phosphorylation levels of STAT1 while having little effect on those of STAT2, JAK1, and TYK2. We engineered an attenuated mutant of nsp1 in SARS-CoV through reverse genetics, and the resulting mutant virus was viable and replicated as efficiently as wild-type virus in cells with a defective IFN response. However, mutant virus replication was strongly attenuated in cells with an intact IFN response. Thus, nsp1 is likely a virulence factor that contributes to pathogenicity by favoring SARS-CoV replication

    Pilot scale biotransformation of vegetal oil into natural green note flavor using sugar beet leaves as sources of hydroperoxide lyase

    Full text link
    Natural green note aromas (GLVs) are highly attractive flavors commonly used in the food industry. These are produced in extremely low levels upon physiological stress in plant organs of any sort. This weak sporadic presence entails a very expensive extraction step to obtain pure GLVs. Therefore catalytic biotransformations of fatty acid sources, the initial substrate for GLVs, have been developed. Enzymatic defense pathways and particularly the LOX pathway produce the major part of GLVs. Unlike GLV molecules that are emitted in the atmosphere, the enzymes are extractible from the plant material. Thus, a combination of plant enzyme extracts and substrate preparations provides all the ingredients for GLV production. Besides, sugar beet leaves present high levels of hydroperoxide lyase among plant sources and are available in large amounts during three months. In this enzymatic pathway, fatty acids are successively transformed by lipase, lipoxygenase and hydroperoxide lyase into aldehydes and alcohols, final compounds of GLVs pathway. Limiting and problematic steps occur with the action of hydroperoxide lyase, when enzymatic catalysis is followed by an enzyme destabilization. Alternative substrates bind irreversibly to the heme group of the enzyme and end the reaction. This poster briefly describes the development of a complete bioprocess for natural GLV production, from hydrolysis to purification. A high level of biotransformation could be achieved using optimum experimental conditions and a cheap source of plant materials

    Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato

    Full text link
    The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.Peer reviewe

    Multimethod Characterization of the French-Pyrenean Valley of Bagnères-de-Bigorre for Seismic-Hazard Evaluation: Observations and Models

    Get PDF
    International audienceA narrow rectilinear valley in the French Pyrenees, affected in the past by damaging earthquakes, has been chosen as a test site for soil response characteriza- tion. The main purpose of this initiative was to compare experimental and numerical approaches. A temporary network of 10 stations has been deployed along and across the valley during two years; parallel various experiments have been conducted, in particular ambient noise recording, and seismic profiles with active sources for struc- ture determination at the 10 sites. Classical observables have been measured for site amplification evaluation, such as spectral ratios of horizontal or vertical motions between site and reference stations using direct S waves and S coda, and spectral ratios between horizontal and vertical (H/V) motions at single stations using noise and S-coda records. Vertical shear-velocity profiles at the stations have first been obtained from a joint inversion of Rayleigh wave dispersion curves and ellipticity. They have subsequently been used to model the H/V spectral ratios of noise data from synthetic seismograms, the H/V ratio of S-coda waves based on equipartition theory, and the 3D seismic response of the basin using the spectral element method. General good agreement is found between simulations and observations. The 3D simulation reveals that topography has a much lower contribution to site effects than sedimentary filling, except at the narrow ridge crests. We find clear evidence of a basin edge effect, with an increase of the amplitude of ground motion at some distance from the edge inside the basin and a decrease immediately at the slope foot

    SITE AND SEISMIC STATION CHARACTERIZATION: AN EUROPEAN INITIATIVE

    Get PDF
    Site characterization is a key input in seismic hazard and risk assessment (e.g. Ground Motion Prediction Equation, microzonation studies, damage scenarios) and seismic design (building codes, critical facilities). Although the number of strong-motion stations in free-field and engineering structures has largely increased over the world in the last twenty years, only a limited number of sites includes detailed site condition indicators: mostly geology and EC8 soil class, more rarely shear-wave velocity (Vs) information (e.g. Vs30 and Vs profiles), without proper documentation and quality assessment in most cases. This lack of information is a critical issue, e.g. for deriving reference rock/soil velocity profiles for region-specific GMPEs, site-specific hazard assessment, vs-kappa adjustments, seismic response of engineering infrastructures, risk modeling at urban or regional scale. Within the framework of the SERA “Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe” Horizon 2020 Project, a networking activity has been set up to propose a comprehensive European strategy and standards fostering site characterization of seismic stations in Europe. We will present the status of this networking activity that focuses on several issues. The first target is to evaluate the most relevant site characterization scalar, depth and frequencydependant indicators (e.g. Vs30, resonance period, velocity profiles, kappa, amplification factors and functions, etc.) for seismic hazard purposes and, thereafter, to propose best practice for site characterization together with standards for overall quality metrics on site characterization. The second target focuses on disseminating, within the broader seismological and engineering community, site characterization metadata developed within the EU NERA and EPOS-IP projects in order to validate and/or further develop metadata format schemes for wide use. Based on available site characterization information in Europe and considering the research and engineering needs, the third target proposes to set up a road map to prioritize strong motion site characterization in Europe for the next decade. Finally, a task is dedicated to investigate relevance of new site condition and amplification proxies (for example combining resonance frequency, local slope and other parameters, proxy for non-linear effects, wavelength-scaled curvature and topographic position index position as proxies for topographic effects, aggravation factor for basin effects, etc.) and their implementation at the European scale and into site characterization metadata.PublishedLa Valletta-Malta5T. Sismologia, geofisica e geologia per l'ingegneria sismic

    CaracterizaciĂłn de los procesos sĂ­smicos y gravitacional sobre el deslizamiento de Maca (Colca)

    Get PDF
    El deslizamiento de Maca está ubicado en el poblado del mismo nombre, a orillas del río Colca en la región Arequipa al sur de Perú. En 1991, un sismo superficial (mb 5.4), con epicentro localizado a 8 km de la zona de estudio, reactivó el deslizamiento, provocando un hundimiento de la carretera, y causó la destrucción del sector oeste del pueblo. Los objetivos del estudio son evaluar los riesgos sísmicos y gravitacionales en el sector de Maca y alrededores. Para ello, se estudiará la respuesta del deslizamiento a los sismos y la interacción onda / estructura, para movimientos sísmicos moderados a fuertes. En este estudio presentamos medidas geodésicas y geofísicas que permitirán caracterizar el subsuelo y la cinemática del deslizamiento, mostrando las diferencias entre los sectores oeste y este. Especialmente, el subsuelo en la parte oeste del pueblo está conformado por material bien consolidado y saturado de agua. Las mediciones sugieren la influencia del subsuelo sobre los procesos sísmicos que sucedieron en 1991. Referente a la cinemática, los resultados de mediciones GPS muestran la influencia de la circulación del agua en la dinámica del deslizamiento, con desplazamientos en la parte oeste de 0.60 m/mes durante la época de lluvia, y de menos de 0.05 m/mes en época seca. La unión de las medidas geofísicas y geodésicas sugiere que la presencia de agua y del sismo es el origen del gran desplazamiento del deslizamiento durante el sismo de julio 1991, justo después la época de la lluvia

    New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells

    Get PDF
    Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner.We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs.Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility for virus propagation

    Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung

    Get PDF
    O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells (HBEC), while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells
    • …
    corecore