7,281 research outputs found
Microwave attenuation and brightness temperature due to the gaseous atmosphere: A comparison of JPL and CCIR values
A sophisticated but flexible radiative transfer program designed to assure internal consistency was used to produce brightness temperature (sky noise temperature in a given direction) and gaseous attenuation curves. The curves, derived from atmospheric models, were compared and a new set was derived for a specified frequency range
Some developments in improved methods for the measurements of the spectral irradiances of solar simulators
Measurement of spectral emission from solar simulators - photoelectric photometr
Development of improved method for measurement of spectral irradiance from solar simulators Progress and status report
Instruments for measurement of spectral irradiances from solar simulator
Ultraviolet HST Observations of the Jet in M87
We present new ultraviolet photometry of the jet in M87 obtained from HST
WFPC2 imaging. We combine these ultraviolet data with previously published
photometry for the knots of the jet in radio, optical, and X-ray, and fit three
theoretical synchrotron models to the full data set. The synchrotron models
consistently overpredict the flux in the ultraviolet when fit over the entire
dataset. We show that if the fit is restricted to the radio through ultraviolet
data, the synchrotron models can provide a good match to the data. The break
frequencies of these fits are much lower than previous estimates. The implied
synchrotron lifetimes for the bulk of the emitting population are longer than
earlier work, but still much shorter than the estimated kinematic lifetimes of
the knots. The observed X-ray flux cannot be successfully explained by the
simple synchrotron models that fit the ultraviolet and optical fluxes. We
discuss the possible implications of these results for the physical properties
of the M87 jet. We also observe increased flux for the HST-1 knot that is
consistent with previous results for flaring. This observation fills in a
significant gap in the time coverage early in the history of the flare, and
therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed
lightcurve and caption in Figure
Investigating the interstellar dust through the Fe K-edge
The chemical and physical properties of interstellar dust in the densest
regions of the Galaxy are still not well understood. X-rays provide a powerful
probe since they can penetrate gas and dust over a wide range of column
densities (up to ). The interaction (scattering and
absorption) with the medium imprints spectral signatures that reflect the
individual atoms which constitute the gas, molecule, or solid. In this work we
investigate the ability of high resolution X-ray spectroscopy to probe the
properties of cosmic grains containing iron. Although iron is heavily depleted
into interstellar dust, the nature of the Fe-bearing grains is still largely
uncertain. In our analysis we use iron K-edge synchrotron data of minerals
likely present in the ISM dust taken at the European Synchrotron Radiation
Facility. We explore the prospects of determining the chemical composition and
the size of astrophysical dust in the Galactic centre and in molecular clouds
with future X-ray missions. The energy resolution and the effective area of the
present X-ray telescopes are not sufficient to detect and study the Fe K-edge,
even for bright X-ray sources. From the analysis of the extinction cross
sections of our dust models implemented in the spectral fitting program SPEX,
the Fe K-edge is promising for investigating both the chemistry and the size
distribution of the interstellar dust. We find that the chemical composition
regulates the X-ray absorption fine structures in the post edge region, whereas
the scattering feature in the pre-edge is sensitive to the mean grain size.
Finally, we note that the Fe K-edge is insensitive to other dust properties,
such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and
Astrophysic
Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster
The formation of planets is directly linked to the evolution of the
circumstellar (CS) disk from which they are born. The dissipation timescales of
CS disks are, therefore, of direct astrophysical importance in evaluating the
time available for planet formation. We employ Spitzer Space Telescope spectra
to complete the CS disk census for the late-type members of the ~8 Myr-old eta
Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess
emission. We find that the presence of a CS disk is anti-correlated with
binarity, with all but one disk associated with single stars. With nine single
stars in total, about 80% retain a CS disk. Of the six known or suspected close
binaries the only CS disk is associated with the primary of RECX 9. No
circumbinary disks have been detected. We also find that stars with disks are
slow rotators with surface values of specific angular momentum j = 2-15 j_sun.
All high specific angular momentum systems with j = 20-30 j_sun are confined to
the primary stars of binaries. This provides novel empirical evidence for
rotational disk locking and again demonstrates the much shorter disk lifetimes
in close binary systems compared to single star systems. We estimate the
characteristic mean disk dissipation timescale to be ~5 Myr and ~9 Myr for the
binary and single star systems, respectively.Comment: Accepted by ApJ
Properties of Extruded PS-212 Type Self-Lubricating Materials
Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent
Harnessing oscillatory fluid behaviour to improve debris wash-out in ureteroscopy
In ureteroscopy, a common method for kidney stone removal, a ureteroscope is inserted into the patient’s kidney, through which working tools such as a laser are inserted. During the procedure, the renal space proximal to the scope tip is irrigated with fluid in order to clear stone particles and debris. However, even with continual fluid flow into and out of the kidney, stone dust may become trapped in vortical structures, significantly impairing the operating clinician’s field of view. Key to overcoming this challenge is a clear understanding of the flow patterns within an irrigated kidney calyx, and a modelling framework that enables to interrogate how different flow conditions impact on the wash-out time of debris. Previous theoretical studies have uncovered the interplay between fluid structure, in particular the presence of vortical regions, and dust washout, but only in a regime of steady inlet flow conditions. In this paper we model a kidney calyx in an idealised 2D cavity geometry, in which we investigate the presence and potential disturbance of vortical structures due to an oscillatory inlet condition, and the impact on dust washout, modelled as a passive tracer in the flow. By varying the flow amplitude and frequency at the inlet, we uncover a delicate relationship with vortex size and vortex disturbance, and we demonstrate the potential for significant decrease in wash-out time with low-frequency high-amplitude conditions. We then compare this result to the commonly used practice of flushing, a discrete and temporary increase in flow, and we also demonstrate the qualitative robustness of our findings to changes in cavity geometry
- …