7,649 research outputs found
Trajectory and propulsion characteristics of comet rendezvous opportunities
Trajectory and propulsion characteristics of spacecraft rendezvous mission opportunities to comets during 1975 to 199
The effects of dust evolution on disks in the mid-IR
In this paper, we couple together the dust evolution code two-pop-py with the
thermochemical disk modelling code ProDiMo. We create a series of
thermochemical disk models that simulate the evolution of dust over time from
0.018 Myr to 10 Myr, including the radial drift, growth, and settling of dust
grains. We examine the effects of this dust evolution on the mid-infrared gas
emission, focussing on the mid-infrared spectral lines of C2H2, CO2, HCN, NH3,
OH, and H2O that are readily observable with Spitzer and the upcoming E-ELT and
JWST.
The addition of dust evolution acts to increase line fluxes by reducing the
population of small dust grains. We find that the spectral lines of all species
except C2H2 respond strongly to dust evolution, with line fluxes increasing by
more than an order of magnitude across the model series as the density of small
dust grains decreases over time. The C2H2 line fluxes are extremely low due to
a lack of abundance in the infrared line-emitting regions, despite C2H2 being
commonly detected with Spitzer, suggesting that warm chemistry in the inner
disk may need further investigation. Finally, we find that the CO2 flux
densities increase more rapidly than the other species as the dust disk
evolves. This suggests that the flux ratios of CO2 to other species may be
lower in disks with less-evolved dust populations.Comment: 13 pages, 9 figures, accepted in A&
Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers
Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging
Trends in Competition and Profitability in the Banking Industry: A Basic Framework
This paper brings to the forefront the assumptions that we make when focusing on a particular type of explanation for bank profitability. We evaluate a broad field of research by introducing a general framework for a profit maximizing bank and demonstrate how different types of models can be fitted into this framework. Next, we present an overview of the current major trends in European banking and relate them to each model’s assumptions, thereby shedding light on the relevance, timeliness and shelf life of the different models. This way, we arrive at a set of recommendations for a future research agenda. We advocate a more prominent role for output prices, and suggest a modification of the intermediation approach. We also suggest ways to more clearly distinguish between market power and efficiency, and explain why we need time-dependent models. Finally, we propose the application of existing models to different size classes and sub-markets. Throughout we emphasize the benefits from applying several, complementary models to overcome the identification problems that we observe in individual models.
The Thermal Structure of the Circumstellar Disk Surrounding the Classical Be Star gamma Cassiopeia
We have computed radiative equilibrium models for the gas in the
circumstellar envelope surrounding the hot, classical Be star Cassiopeia. This calculation is performed using a code that incorporates a
number of improvements over previous treatments of the disk's thermal structure
by \citet{mil98} and \citet{jon04}; most importantly, heating and cooling rates
are computed with atomic models for H, He, CNO, Mg, Si, Ca, & Fe and their
relevant ions. Thus, for the first time, the thermal structure of a Be disk is
computed for a gas with a solar chemical composition as opposed to assuming a
pure hydrogen envelope. We compare the predicted average disk temperature, the
total energy loss in H, and the near-IR excess with observations and
find that all can be accounted for by a disk that is in vertical hydrostatic
equilibrium with a density in the equatorial plane of to
. We also discuss the changes in
the disk's thermal structure that result from the additional heating and
cooling processes available to a gas with a solar chemical composition over
those available to a pure hydrogen plasma.Comment: 11 pages, 8 figures high resolution figures available at
http://inverse.astro.uwo.ca/sig_jon07.htm
On the predictions and limitations of the BeckerDoring model for reaction kinetics in micellar surfactant solutions
We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker–Döring system of equations, using realistic expressions for the reaction constants fit to Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated time-scales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker–Döring theory for re-equilibration and discuss potential resolutions
An asymptotic theory for the re-equilibration of a micellar surfactant solution
Micellar surfactant solutions are characterized by a distribution of aggregates comprised predominantly of pre-micellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale re-equilibration following a system dilution, known as the 1 and 2 processes, whose dynamics may be described by the Becker–Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes
Discovery of extended radio emission in the young cluster Wd1
We present 10 micron, ISO-SWS and Australia Telescope Compact Array
observations of the region in the cluster Wd1 in Ara centred on the B[e] star
Ara C. An ISO-SWS spectrum reveals emission from highly ionised species in the
vicinity of the star, suggesting a secondary source of excitation in the
region. We find strong radio emission at both 3.5cm and 6.3cm, with a total
spatial extent of over 20 arcsec. The emission is found to be concentrated in
two discrete structures, separated by 14''. The westerly source is resolved,
with a spectral index indicative of thermal emission. The easterly source is
clearly extended and nonthermal (synchrotron) in nature. Positionally, the B[e]
star is found to coincide with the more compact radio source, while the
southerly lobe of the extended source is coincident with Ara A, an M2 I star.
Observation of the region at 10micron reveals strong emission with an almost
identical spatial distribution to the radio emission. Ara C is found to have an
extreme radio luminosity in comparison to prior radio observations of hot stars
such as O and B supergiants and Wolf-Rayet stars, given the estimated distance
to the cluster. An origin in a detatched shell of material around the central
star is therefore suggested; however given the spatial extent of the emission,
such a shell must be relatively young (10^3 yrs). The extended non thermal
emission associated with the M star Ara A is unexpected; to the best of our
knowledge this is a unique phenomenon. SAX (2-10keV) observations show no
evidence of X-ray emission, which might be expected if a compact companion were
present.Comment: 5 pages including encapsulated figures, figure 3 separate. Accepted
for MNRAS pink page
- …