109 research outputs found

    Energetics and water flux in the subterranean rodent family Bathyergidae

    Get PDF
    The doubly labeled water (DLW) technique and indirect calorimetry enable measurement of an animal’s daily energy expenditure (DEE, kJ/day), resting metabolic rate (RMR, kJ/d), sustained metabolic scope (SusMS), body fat content (BF, %) as well as water turnover (WTO, ml/day), and water economy index (ml/kJ). Small mammals have been the primary focus of many of the DLW studies to date. From large multi-species analyses of the energetics and water flux of aboveground small mammals, well-defined trends have been observed. These trends mainly refer to an adaptive advantage for lower RMR, DEE, SusMS, WTO and WEI in more ariddwelling animals to increase water and energy savings under low and unpredictable resource availability. The study of the subterranean rodent family Bathyergidae (African mole-rats) has been of particular interest with regards to field metabolic rate and metabolic studies. Although a great deal of research has been conducted on the Bathyergidae, a complete overview and multispecies analysis of the energetics and water flux of this family is lacking. Consequently, we assessed DEE, RMR, SusMS, BF, WTO and WEI across several different species of bathyergids from various climatic regions, and compared these to the established patterns of energetics and water flux for aboveground rodents. There was notable variation across the Bathyergidae inhabiting areas with different aridities, often contrary to the variations observed in above-ground species. These include increased DEE and WEI in arid-dwelling bathyergid species. While the climate was not a clear factor when predicting the SusMS of a bathyergid species, rather the degree of group living was a strong driver of SusMS, with solitary species possessing the highest SusMS compared to the socially living species. We conclude that the constraints of the underground lifestyle and the consequent spectrum of social behaviors possessed by the family Bathyergidae are most likely to be more crucial to their energetics and water flux than their habitat; however other important unstudied factors may still be at play. More so, this study provides evidence that often unreported parameters, measured through use of the DLW technique (such as BF and WEI) can enable species to be identified that might be at particular risk to climate change.The SARChI Chair of Mammal Behavioral Ecology and Physiology, National Research Foundation RSA, the British Ecological Society (SEPG), and the National Science Foundation, United States.http://frontiersin.org/Ecology_and_Evolutiondm2022Zoology and Entomolog

    Accounting and social movements: An exploration of critical accounting praxis

    Get PDF
    A central tenet of critical accounting research maintains the need to challenge and change existing social relations; moving towards a more emancipated and equitable social order. The question of how critical accounting research upholds this principle has been intermittently discussed. This paper aims to engage with, and further, this discussion by contributing to research linking accounting information to social movements. The paper reviews the literature on accounting and social movements, central to which is the work of Gallhofer and Haslam; using their work as a departure point we discussion the nature of accounting information and focus on social movement unionism (SMU). Drawing on Bakhtinian dialogics and classical Marxism we develop an alternative theoretical framework to analyse an example of accounting information and social movements, covering a trade union pay dispute. The paper concludes with a discussion of the class nature of accounting information, including an exploration of the implications for accounting praxis and agency in the struggles for an emancipated world. The paper builds on the limited amount of existing work in this area; exploring the ‘class belongingness’ of accounting information and developing an understanding which can help guide the praxis of critical accounting researchers

    The role of melanin pathways in extremotolerance and virulence of <em>Fonsecaea</em> revealed by <em>de novo</em> assembly transcriptomics using illumina paired-end sequencing

    Get PDF
    AbstractMelanisation has been considered to be an important virulence factor of Fonsecaea monophora. However, the biosynthetic mechanisms of melanisation remain unknown. We therefore used next generation sequencing technology to investigate the transcriptome and digital gene expression data, which are valuable resources to better understand the molecular and biological mechanisms regulating melanisation in F. monophora. We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of parent (CBS 122845) and albino (CBS 125194) strains using the Illumina RNA-seq system. A total of 17 352 annotated unigenes were found by BLAST search of NR, Swiss-Prot, Gene Ontology, Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <1e‒5). A total of 2 283 unigenes were judged to be the differentially expressed between the two genotypes. We identified most of the genes coding for key enzymes involved in melanin biosynthesis pathways, including polyketide synthase (pks), multicopper oxidase (mco), laccase, tyrosinase and homogentisate 1,2-dioxygenase (hmgA). DEG analysis showed extensive down-regulation of key genes in the DHN pathway, while up-regulation was noted in the DOPA pathway of the albino mutant. The transcript levels of partial genes were confirmed by real time RT-PCR, while the crucial role of key enzymes was confirmed by either inhibitor or substrate tests in vitro. Meanwhile, numbers of genes involved in light sensing, cell wall synthesis, morphology and environmental stress were identified in the transcriptome of F. monophora. In addition, 3 353 SSRs (Simple Sequence Repeats) markers were identified from 21 600 consensus sequences. Blocking of the DNH pathway is the most likely reason of melanin deficiency in the albino strain, while the production of pheomelanin and pyomelanin were probably regulated by unknown transcription factors on upstream of both pathways. Most of genes involved in environmental tolerance to oxidants, irradiation and extreme temperatures were also assembled and annotated in transcriptomes of F. monophora. In addition, thousands of identified cSSR (combined SSR) markers will favour further genetic linkage studies. In conclusion, these data will contribute to understanding the regulation of melanin biosynthesis and help to improve the studies of pathogenicity of F. monophora

    Graph Transformation in Molecular Biology

    Full text link
    In the beginning, one of the main fields of application of graph transformation was biology, and more specifically morphology. Later, however, it was like if the biological applications had been left aside by the graph transformation community, just to be moved back into the mainstream these very last years with a new interest in molecular biology. In this paper, we review several fields of application of graph grammars in molecular biology, including: the modeling higherdimensional structures of biomolecules, the description of biochemical reactions, the analysis of metabolic pathways, and their potential use in computational systems biology

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Munsee Indian Trade in Ulster County, New York, 1712–1732

    No full text

    Temperature-associated morphological changes in an African arid-zone ground squirrel

    No full text
    The ecology, life histories, and physiology of many animals are changing in response to human-induced climate change. As the Earth warms, the ability of an animal to thermoregulate becomes ecologically and physiologically significant. Morphological adaptations to warmer temperatures include larger appendages and smaller bodies. We examined morphological features in a ground squirrel, Xerus inauris, living in the arid zones of South Africa, to examine whether squirrels have responded to increases in temperature and changes in seasonal rainfall with morphological modifications over the last 18 years. We found that over time, absolute hindfoot length and proportional hindfoot length increased, while spine length decreased. These changes are consistent with ecogeographical rules (Allen’s rule and Bergmann’s rule) and provide evidence in support of “shape-shifting” in response to climatic warming. Body mass also increased with time; however, these changes were not consistent with Bergmann’s rule, indicating that mass is influenced by other ecological factors (e.g., resource availability). Our study adds to the growing evidence that animal morphologies are changing in response to changing climatic conditions, although it remains to be seen whether these changes are adaptive.https://academic.oup.com/jmammal2023-11-23Mammal Research InstituteZoology and Entomolog
    • 

    corecore